Dave Dunford (350828)

The SUMS Architecture

SUMS Architecture
 for the University of Portsmouth
by

Dave Dunford

(Supervised by Dr. Jim Briggs)

2008

ABSTRACT
The Student Unit Management System (SUMS) has been implemented during a period of significant change.
Change has been brought about through a revolution in business and technical requirements. This requires SUMS to evolve in a rapidly changing environment as the University of Portsmouth seeks to expand the management of its course processes. Currently, SUMS is implemented as a series of sub-systems which are separate applications and effort is required to synchronise their databases.
This project considers the architecture which will enable SUMS and its sub-systems to utilise the facilities of a common database. SUMS-Submission is used as an example implementation of a SUMS sub-system employing the proposed architecture. This report and the example deployment documents the methodologies required to implement the business processes of SUMS sub-system(s) sharing a common database to the SUMS application.

Table of Contents
61 Introduction

61.1
Background of the problem to be solved

71.2
Aims and Objectives

81.3
General overview of the report

92
Web Application Architecture

92.1
Web Application Software Engineering

102.2
Patterns in Web Application Architecture

122.3
Web Application Architecture Layers

152.4
Web Application Persistence

152.4.1 Hibernate – Its use

162.4.2 Hibernate and the Persistence Lifecycle

182.4.3 Data Integrity and Transactions

202.4.4 Database Transactions and the Java Persistence API (JPA)

212.5
Summary

223 Analysis of SUMS and its Components

223.1
Introduction

223.2
Project Management

243.3 System Requirements

243.3.1 Introduction

263.3.2 SUMS-Submission System Actors

283.3.3 SUMS-Submission Use Cases Diagrams

293.3.4 SUMS-Submission Functional Requirements

303.3.5 SUMS-Submission Requirements Prioritisation

313.4 SUMS Domain Object Model Requirements Analysis

313.5 Review of SUMS

333.6 Summary

344 SUMS Architectural Design

344.1 Introduction

354.2 SUMS Application Architectural Framework

384.3 Presentation Tier Design

404.3.1 An implementation of a SUMS User Interface View

434.3.2 An implementation of a SUMS User Interface Controller

454.3.3 An implementation of a SUMS User Interface Logon Controller

484.4 Business Services for Presentation layer

494.5 Resource Layer Design

494.6 Persistence Layer Design

504.6.1 Database Tables

504.6.2 Entity Classes

514.7 Summary

525. A SUMS Implementation

525.1 Introduction

525.2 Development Tools

535.2.1 Hardware

535.2.2 Software

535.2.2.1 MySQL™ database server

535.2.2.2 MySQL™ Administrator

535.2.2.3 MySQL™ Query Browser

545.2.2.4 Java™ Technology

545.2.2.5 NetBeans

545.2.2.6 Macromedia Dreamweaver

545.2.3 Problems found on development tools

555.3 Implementation of a SUMS sub-system

555.3.1 A SUMS User Interface implementation

565.3.2 Business Services of Domain Object Model

575.3.3 Data Access Layer of the SUMS DOM Resources

575.3.4 Persistence Layer of the SUMS DOM Resources

595.4 SUMS-Submission – An Example Implementation

605.4.1 A SUMS User Interface Logon implementation

635.4.2 SUMS-Submission Student’s work User Interface

685.4.3 SUMS-Submission Student Receipt after upload

705.5 Summary

716. Testing & Evaluation

716.1 Introduction

716.2 SUMS Application Architectural Design Evaluation

726.3 Functionality Testing

726.3.1 Memory use and data flow analysis

726.3.2 Test Results of Logon / Logoff

746.3.3 Student

746.3.3.1 Successful Logon by Student

756.3.3.2 Management Upload of artefact by Student

776.3.3.3 Report Successful Upload of artefact by Student

776.3.4 Cohort Coordinator

786.3.5 Marker

796.4 Evaluation

796.4.1 Logon / Logoff

796.4.2 Cohort Coordinator

806.4.3 Student

806.4.4 Marker

806.5 Summary

817. Conclusion

817.1 Project Planning

817.2 Designing and Implementing SUMS Architecture

857.3 Learning Achievements

857.4 Summary

878. References

909. Bibliography

91Appendix 1. Requirements

94Appendix 2 SUMS Data Dictionary

94Version History

94Tables

94Table Name: ACTIVATION

94Table Name: ASSESSMENT

94Table Name: AUDIT_TRAIL

95Table Name: CATEGORY_MARKS

95Table Name: CATEGORY_OPTION_CRITERIA

96Table Name: CATEGORY_OPTION_GROUPS

96Table Name: CATEGORY_OPTIONS

96Table Name: COHORT

97Table Name: COHORT_COORDINATORS

97Table Name: CONTACTS

97Table Name: EMAILMESSAGES

98Table Name: EMAILS

98Table Name: FILEATTACHMENT

98Table Name: FILEATTACHMENTTYPES

99Table Name: FILEUPLOAD

99Table Name: FINAL_PROJECT

100Table Name: IDEAS2

100Table Name: MARK_CATEGORIES

101Table Name: MARK_FORM_CATEGORIES

101Table Name: MARK_FORMS

101Table Name: MARKER_CAPACITY

102Table Name: MARKER_TYPE

102Table Name: MARKS

103Table Name: MILESTONES

104Table Name: MSTUDENTMILESTONES

104Table Name: MUNITMILESTONES

105Table Name: OPTION_MARKS

105Table Name: PERSON

105Table Name: PERSON_EMAIL

106Table Name: PERSON_ROLES

106Table Name: PRIZE_CATEGORIES

106Table Name: PRIZE_NOMINATIONS

106Table Name: PREFERRED_STUDENTS

107Table Name: PROJECT_CHOICE

107Table Name: PROJECT_CHOICE_OPTIONS

108Table Name: ROLES

108Table Name: STAFF

108Table Name: STATUSES

108Table Name: STUDENT

109Table Name: TEL_NUMBER

109Table Name: UNIT

109Table Name: UNIT_MARK_FORMS

110Appendix 3 SUMS Entity Relationship Diagrams by Role

110Appendix 3.1Entity Relationship Diagram for Project Coordinator

111Appendix 3.2 Entity Relationship Diagram for Marker

112Appendix 3.3 Entity Relationship Diagram for Student

113Appendix 4 Data Typing Standards

114Appendix 5 Business Services of the SUMS DOM

118Appendix 6 SUMS-Submission Logon JSP example

1 Introduction

1.1 Background of the problem to be solved
Since 2004, the University of Portsmouth School of Computing has undertaken a project to deliver a computer system to manage the marking of artefacts submitted by Students towards units which are related to their final assessment associated with their studies. The project has been undertaken by various students and has become known as the Student Unit Management System (SUMS). It is intended that SUMS should eventually replace the Project Unit Management System (PUMS). Figure 1 illustrates the current design of SUMS.

[image: image1.emf]SUMS sub-system architecture

October 2007

SUMS-Registration or

Online Student

Registration and Unit

management (OSRU)

SUMS-Allocation or

Online Project and Ideas

and Allocation System

(OPAS)

SUMS-Monitor

Online Project Progess

System (OPPS)

SUMS-Submission

Online Project

Submission System

(OPSS)

OEER (Sums3)

External Examiner

Reporting System

SUMS

Key

Ivan Yueng (2006) used

Struts 1.2.x and native

SQL

Javi Ruiz (2006) used

Struts 1.2 and Hibernate

with NBXdoclet

Nikolas Fountas (2007)

used Struts 1.2 and JPA

Bui Hoang Phuong (2007)

used Struts 1.2 and JPA

Steve Powell (2005) used

Struts 1.2 and native SQL

SUMS-Assessment or

Online Project Marking

System (OPMS)

Jim Briggs (2005) used

Struts 1.2 and ?

DD SUMS v6 sub system architecture oct 2007.vsd version 0

Figure 1. SUMS sub-system architecture
The SUMS sub-systems have been developed using Java™ technologies which introduce an Object-Oriented (OO) architecture to their design. OO provides a natural approach to the development of a computer system as its design seeks to model a ‘real-life’ process. It enables a designer to consider a computer system as a network of interconnected objects whose behaviour is dependant on each other. Each object represents an instance of a ‘thing’ which makes the system work and a ‘thing’ can be visualised or abstracted from constituents or operations within the ‘real-life’ process. A computer system with an OO architectural design can be viewed like a living organism whose behaviour is controlled by sensitivity to its outside environment and the needs of its constituent cells.

Underlying a SUMS sub-system is a database which uses a Relational model; here each object is represented as an entity constructed from information held as rows and columns in a tabular format. Bauer and King (2007, pp.10-20) describe this as a “paradigm mismatch” and identifies the need to include a translation process between the OO and relational models within the design of a computer system.
The SUMS sub-systems have been implemented during a period of significant change to the Java™ platform, for example:
· J2SE 1.4 released February 2002

· J2SE 5.0 released in September 2004

· Java EE 6 released in December 2007

Change has been further introduced through the availability and consistency of open source frameworks such as Apache Struts, JBoss Hibernate and Java Persistence API. This has introduced a variation to the SUMS sub-system implementations as each developer has sought to exploit emerging technologies.

1.2 Aims and Objectives

The key purpose of this project is to consider the architectural design of the SUMS application and enable its sub-systems to be separately implemented while sharing a common database. Focus is provided by utilising existing data structures of the SUMS database and incorporating them into an architecture which provides facilities to a sub-system through centralised Business Services of the SUMS application.
There is a need to consider the SUMS architecture as a whole which would be supported by a framework of re-usable components enabling future enhancement, development and maintenance of SUMS and its sub-systems. The client requested the design of the framework and its components to exploit Java™ technologies coupled with the persistence frameworks of Hibernate 3 and EJB 3.0. Initial implementation of SUMS will utilise J2SE technology as its sub-systems and database will reside on a single server.
SUMS will employ architecture of an OO nature and will require the application of component based software engineering (CBSE) principles during its construction.

This project focused its attention to evaluating the SUMS Domain Object Model which is a centralised framework providing Business Services and back-end processes to a SUMS web application. Its purpose is to create an OO architecture comprising re-usable components.

Design of the SUMS architecture considers requirements of a front-end web tier and its needs to access Business Services which translate entities from the SUMS relational database into recognizable objects.
A separate project was undertaken by Kate Stainton-Ellis to evaluate the front-end web tier architecture of each SUMS sub-system with consideration to accessing the Business Services provided by the SUMS Domain Object Model.

From the existing SUMS Sub-systems, the client selected an order of preference for development and it was considered that SUMS-Submission, originally developed by Bui Hoang Phuong (2007) should be evaluated first.

Initial work by the author was required to establish the evolution to the current SUMS database design giving a revised data dictionary, refer to Appendix 2.

1.3 General overview of the report
The report is organised into seven main chapters as follows:
· Chapter 2 discusses architectural design of a web application and considers the technologies to be employed by SUMS
· Chapter 3 analyses the issues relevant to the design of the SUMS architecture with consideration to the development of SUMS-Submission

· Chapter 4 considers the design requirements to implementing the SUMS application using Object Oriented Architecture

· Chapter 5 provides a detailed account to the deployment of the SUMS architecture using a version of SUMS-Submission as an example

· Chapter 6 evaluates the SUMS architecture through a deployment of SUMS-Submission

· Chapter 7 reflects on the SUMS architectural design and offers suggestions to improve and extend its capability.
2 Web Application Architecture
2.1 Web Application Software Engineering
Pressman (2000, pp. 357-365) advises that software architecture is important for 3 key reasons, it:
· Enables communication between the stakeholders whom have an interest in the development of a computer system.

· Highlights design decisions that impact the engineering processes employed to deliver an operational computer system.

· Provides a model of the system structure and the workings of its components.

SUMS and its components are required to be built using Java™ technologies and will employ an Object-oriented architecture whose components will encapsulate the data and manipulate it through their interfaces.

Pressman (2000, pp.738-760) considers there are difficulties in developing computer systems that use component based software engineering (CBSE) techniques. Re-use is central to CBSE and is often elusive for a variety of reasons; an organisation may consider the key factors to be:

· Anticipation of component re-use into a system’s architectural design

· Incorporation and use of 3rd party software and tools

· Development using accepted standards and interfaces

· Design and Construction of re-usable components

· Strong commitment to maintenance of the re-usable components

· Effective cataloguing, classifying and documentation into readily available libraries

· Effective search engines of the component catalogues and documentation

· Constant support from all levels within the organisation

· Life-cycle and management of a CBSE project with its associated risks

Coupled with this is the need to incorporate Change; Development of web applications proceed where innovation is essential as organisations strive for perfection and commercial advantage.
High quality system design in a rapidly changing world is elusive and D’Souza (1998, pp. 486-490), amongst others, identify qualities used to measure the effectiveness of a component based system’s architecture, these are:

Modifiability – easy identification of changes and their restriction to localized well-defined area is a key factor for effective support
Reusability – design is well structured and exercises the Don’t Repeat Yourself (DRY) principle
Portability – measures the ability of the design to be insulated from changes to underlying hardware and software platforms
Buildability – measures the integration and use of third party components, libraries and tools
Testability – demonstrably effective to ensure compliance with all system requirements
Functionality – effective and meets all of the user’s needs
Usability – easy to understand, learn its functions and use
Performance – adequate use of hardware and software giving effective responses to users within acceptable and agreed limits

Scalability – linked to performance, which should only degrade to acceptable limits as the load is increased
Security – permits authorised and authenticated use according to system requirements and complies with public and statutory “requirements”
Reliability and availability – is fault-tolerant to specified limits
2.2 Patterns in Web Application Architecture

Like most Internet-based applications, The SUMS implementation has utilised a simple “Thin Web Client architectural pattern” as described by Conallen (2000, pp. 101-105). This architecture is typified by use of a client’s browser which renders the web-page supplied by business logic executed on a server. A SUMS sub-system is implemented as a standalone J2SE application operated on a single application server. It is managed through the web server Apache using Tomcat as a servlet container. Figure 2 illustrates a typical SUMS implementation where it has utilised the Model-View-Controller (MVC-2) architecture documented by Sun Microsystems as a standard for Java™ web applications.

[image: image2.emf]Internet

Browser

Controller depending on

URI

(Servlet)

View

(JSP)

Model

(Entity/Java Bean)

1 HTTP Request

4 pass control

6 HTTP Response

with HTML

J2SE Web Application

Containers within a single

Java Virtual Machine

(JVM)

2 Change state

3 State Changed

5 Use for Display

DD MVC-2.vsd version 0

Figure 2. SUMS sub-system design using J2SE MVC-2 architecture, adapted from Freeman (2004, pp. 549-558)
Sun’s web application MVC-2 architecture, as seen in Figure 2, uses the servlet as a Controller to process a HTTP request and produce an appropriate response or View by invoking a JavaServer Page (JSP). The View presents information from the Model which had been previously constructed by the Controller. The JVM is constantly running and handles each request by invoking a new thread of the appropriate servlet. Many threads are managed by the containers but only one copy of each servlet class is loaded into the JVM. A JavaServer Page (JSP) is a servlet which issues a HTTP Response using HTML presentation.

There are many ways to implement MVC-2 architecture as it is only a general strategy. A SUMS sub-system is encouraged to implement MVC-2 using the Apache Struts framework. Figure 3 provides a pictorial overview of the main Struts components that are used to implement MVC-2.

[image: image3.emf]Internet

Browser

ActionForm

(maps data and state

changes from Request)

Struts Action

Controller

Model

(Entity/Java Bean)

Action Classes

(invoke business logic

and services)

ActionForward

Action

Mapping

HTTP Request

invokes

Declares a

response

HTTP Response

Configuration

Files

Obtain incoming data

Map request and

 response flows

Change

State

State

Changed

Dislay

DD Struts Model.vsd version 0

Figure 3. Main Struts components for implementing MVC-2, adapted from Husted (2003, pp. 44-45)

The Struts Action Controller manages the HTTP Request/Response through the JavaServer Pages(JSP) and sequence is controlled through the ActionForward and ActionMapping classes. Decision making processes are held away from the presentation layer and configuration files are used to map the Views to logical destinations. Husted (2003, pp. 29-58) considers Struts is a web application framework that removes the “kluge” of developing code for the HTTP request-response cycle. Struts is used within the presentation tier(s) of an enterprise application. This popular framework is useful as it is model neutral and enables Struts to be used within the presentation layer of an enterprise web application.

2.3 Web Application Architecture Layers
Sun’s MVC-2 architecture encourages a web application to be built in layers or tiers. Crawford and Kaplan (2003, pp. 116-117) describe a typical structure as follows:

1. Presentation or View tier which handles

· Request from the user’s browser

· Response using information from the Model
2. Visible business tier, ie: Controller
3. Business Services used by the Controller tier provides access to the Model
4. Resource tier supplies information to the Model and is divided into

· Data Access / Façade layer

· Relational Database Management System
· Database(s)

At a large-grained level: a SUMS sub-system, for example: SUMS-Submission, can have 2 distinct components:-

1. Presentation layers fulfilling specific business requirements through Controller(s) and View(s)
2. Core Business Services provided to the SUMS application by its Domain Object Model.

The SUMS Domain Object Model provides Business Services through interfaces. One function of these interfaces is to encapsulate the persistence of data with the database. Persistence is the management of Input/Output (I/O) processes of a database using a Relational Database Management System.
Figure 4 illustrates an implementation of a web application architectural design, such as that proposed for the SUMS application.
The Resource tier provides access to the SUMS database which is managed by a Relational Database Management System (RDBMS). At the client’s request, access to the database is controlled through the persistence framework Hibernate. Minter and Linwood (2006, pp. 5-8) affirm this decision by suggesting Hibernate is a “thin” solution that does not require the “presence or burden” of an application server and is suitable for standalone lightweight applications, for example: J2SE web applications running with Apache and Tomcat !

[image: image4.emf]Internet

Browser

ActionForm

(maps data and state

changes from Request)

Struts Action

Controller

Action Classes

(invoke business logic

and services)

ActionForward

Action

Mapping

HTTP Request

invokes

Declares a

response

HTTP Response

Configuration

Files

Obtain incoming data

Map request and

 response flows

Web Containers (Apache/Tomcat)

Presentation Tier

Visible Business Tier

DD SUMS model 1.vsd version 0

Services

SUMS database

Business Services

Resource Tier

SUMS Component (Sub-system)

SUMS Domain Object Model

Figure 4: Web application architectural design proposed for the SUMS application and implemented with J2SE technology and MVC-2 design pattern

Figure 5 illustrates the layers within the Resource tier of a web application using the persistence framework Hibernate (with JPA).

[image: image5.emf]DAO superclass

 providing persistence /

transactional context management

Concrete

implementation of

DAO by Entity called

by Business Services

Concrete implementation of a

PersistenceManagerDAO

providing JPA Persitence Context

control AND database consistency

during commit failures, called by

the Controller invoked through the

presentation tier

Hibernate libraries

supporting use of JPA

Entity Classes/POJO

using JPA Annotations

with Java 5 SE providing

information of the Model

to the presentation tier

RDBMS

Persistence Unit

Data Access Layer

,

adapted from Minter and

Linwood (2006, pp.52-60)

JPA Persistence Context

created and managed by

the Hibernate

EntityManager

JPA Transactional

Context managed

through Persistence

Context

<<Extends>>

Persistence Layer

creates

uses

uses

DD SUMS resource tier.vsd version 0

uses

uses

CRUD SQL

JDBC

ACID transactions

Fulfills

Data Layer

Database

Figure 5 Architectural Design of a Resource tier using 3rd party software
The following section expands on these mechanisms and discusses their benefits for their use in the architectural design of the SUMS Domain Object Model.
2.4 Web Application Persistence

2.4.1 Hibernate – Its use

Bauer and King (2007) elaborate on the advantages of using a persistence framework like Hibernate in a Java™ application; of interest to the architectural design of a web application like SUMS and its Domain Object Model are:

· Improvement to the readability of code by removing the use of verbose logic/code required to access a database via the Java Data Base Connectivity (JDBC) API

· Increased understanding of application code by abstracting the Create, Read, Update, Delete (CRUD) statements from the application’s logic

· Decoupling of processing and selection of the Relational Database Management Systems (RDBMS) away from the application, it does this by providing drivers relevant to the underlying database (eg: an SQL dialect)
· Removal of vendor lock-in to a specific RDBMS
· Provision of high cohesion and low coupling to application logic by enabling the persistence of instance variables to the rows/columns in table of a relational database, accomplished through the provision of Object Relational Mapping (ORM) tools

· Entity classes are composed using combinations from rows/columns of the database tables

· Enabling of reuse by supporting entity classes as Plain Old Java Objects (POJOs)
· Provision of a transparent persistence mechanism, ie: entity classes are unaware of their own persistence capability thus an application can invoke logic within a persistent object which is unrelated to the persistent process

· Fulfilment of the entities/POJOs are abstracted from the application, improving understandability and modifiability by giving simpler code and separating the ORM metadata into XML configuration files

· Database updates are abstracted away from the application improving understandability and modifiability by giving simpler code and enabling “cascade” operations through the ORM metadata

· Efficient use of memory, cache and buffers is enabled by “postponing” database access until the information is actually required

· Programmatic control of database access can be used to override its default of “lazy loading”

· Performant and supports scalability as loads increase

· Increased availability by using optimistic database table locking mechanisms which manage the persistence process

· Easy to review as it supports a variety of mechanisms which can provide statistics on the operations of the framework via its persistence unit configuration, Log4j, JMX and others

· Extensibility is provided by the use of Interceptors, which, for example: can be used to implement computer audit features required for database integrity and scrutiny

Minter and Linwood (2006, pp.252-263) describe Hibernate’s architectural design is based on event processing and outline steps to extend Hibernate’s functionality through use of Event Listeners. But, they provide a word of caution as such extensions expose the inner workings of Hibernate and should only be used for “Something requiring the level of interference of a security tool”. While Interceptors can add additional processing at extension points as they listen to Hibernate’s events.

Hibernate does have some disadvantages, these are:

· Every entity must be identifiable using a primary key

· Object Relational Mapping (ORM) tools prefer the underlying database tables to be indexed via “Surrogate Keys”, these are primary keys that are autonomous to the business design process, this can be a problem with legacy database designs

· Possible overhead of ‘bloated’ software

· Difficulty in the initial understanding and use of the ORM tools and the associated physical configuration of the underlying database tables

· Mismanagement of the database read and update process by poor understanding of the persistence “life-cycle” and transaction processing offered by the framework

· Poor design and implementation can be introduced by developers who fail to understand the nature and complexity in using Hibernate with its ORM tools
2.4.2 Hibernate and the Persistence Lifecycle
Hibernate uses a Persistence Context to manage the Input/Output processes with a database. Data is provided to the application through entities which are instances of the entity classes. SUMS is an application using JPA Annotations with Hibernate and a Persistence Context is an instance of the Hibernate EntityManager constructed with information from a Persistence Unit.
Figure 6 illustrates the transitions of an entity instance during the persistence lifecycle managed by Hibernate. These transitions are normally managed within a database transaction which is a unit of work linked to an atomic set of business processes.
An appreciation of the persistence lifecycle is essential to the design and implementation of a database transaction. This understanding is particularly crucial if the developer chooses the database transaction to span over a conversation comprising 2 or more request-response cycles.

[image: image6.emf]Transient

Persistent

Detached

Removed

new

garbage

garbage Remove()

Merge()

garbage

Close()

Clear()

Persist()

merge()

Find()

getReference()

Query.getResultList()

Query.getSingleResult()

DD Entity States and their transitions.vsd version 0

Figure 6 Transitions of an entity instance managed Java Persistence API (JPA) through a Hibernate EntityManager, adapted from Bauer and King (2007, p.386)
Transient entities are not managed by the Persistence Context, modifications to these instances become managed by either a call to the persistence manager or creation of a reference to an already persistent instance.

An entity is said to be Persistent when it has a database identity and has been associated to a Persistence Context.

Entities can be Removed or Detached from a Persistence Context and are thus no longer managed by Hibernate.

Hibernate manages changes made to a Persistent instance through “scope of object identity” as described by Bauer and King (2007, pp.393-394) and it is vital to understand that a persistent and managed instance has a database identifier linked to any modification recognised through the instances equality when compared to its persistent values. Bauer and King (2007, pp. 161-171) describe this process as “Mapping Entities with Identity”.

It is important to remember that business information stored in an entity instance is available to the application until it has been removed into garbage collection. The components of a SUMS sub-system presentation tier can pass this information by reference through the use of web application attributes. The View can extend the information content by invoking database access through its own Persistence Context generated through Hibernate by the use of the accessor (getter) methods of an entity.

2.4.3 Data Integrity and Transactions
Figure 7 illustrates database transaction(s) restricted to a single HTTP request/response cycle of a conversation with a web application. A conversation comprises one or more request/response separated by a user’s think time.

[image: image7.emf]Servlet Controller as

new thread

Reource tier builds entity

instances using

Persistence manager of

Servlet

JSP instance

 build entity instances

using Persistence

manager created for JSP

1 HTTP Request

2

3 Issue Queries to

complete entity instances

4 Pass control to JSP

5 Obtain display

information via entity

instances

6 HTTP Response

DD SUMS trx process.vsd version 0

Figure 7 Overview of Information Input/Output flows and display within a Request / Response cycle

To simplify the implementation of database transactions in the SUMS application; it was decided with the client’s approval that a database transaction would be limited to a HTTP request-response cycle. This implements the single-session(transactional context)-per­request pattern described by Bauer and King (2007, p.391).

Architectural design of SUMS can ignore the issues associated with the management of Detached entity instances that can span units of work though the conversational processes. However it does mean that a SUMS presentation tier must manage its users requirements through a series of independent HTTP request/response cycles and any ‘links’ must be provided by other means, eg: web application attributes.

Table 1 below summarises issues associated with the design of an application using the single-session(transactional context)-per­request pattern.
	Pros
	Cons

	Removes the need to consider re-attachment of Detached entity instances by the web presentation tier
	Requires each new servlet thread to consider refreshing the entity instances

	Tuning of Hibernate, RDBMS and database buffers will reduce I/O
	Excessive calls to the database

	Simplifies Persistence Life-cycle
	

	A persistence context is limited to a unit of work which equates to the HTTP request/response cycle
	Disables Hibernate’s ability to use the persistence context as a first-level cache across a conversation

	Simplifies the design of a business transaction by ensuring the database is updated for each HTTP request/response cycle
	Increases I/O to the database as Hibernate is forced to update the database during each HTTP request/response cycle and effectively disables Hibernate’s ability to delay updates by its “transparent transaction-level write-behind” discussed by Bauer and King (2007, p.389)

	Minimises database locks
	

Table 1 Concerns using Hibernate with single-session-per­request pattern
Bauer and King (2007, p. 385) advise “it is necessary for the application to concern itself with the state and lifecycle of an object with respect to Persistence” and this requires consideration to be given when multiple users concurrently access the SUMS database. Each person requires their work associated with the database to be insulated from all other use; Bauer and King (pp. 433-475) define the need to provide database consistency through transactional processing. This requires database operations to be grouped into one or more logical units of work or transactions linked to a user’s conversation.
2.4.4 Database Transactions and the Java Persistence API (JPA)
Recently, Sun Microsystems introduced Enterprise JavaBeans 3.0 (EJB3) – a new standard and framework to manage the persistence lifecycle. The Java Persistence API is a part of EJB3 and is specified within JSR220 of the Java Community Process (2007)
Developers of Hibernate were closely involved with the specification of JPA and its introduction into an application using Hibernate is relatively easy. JPA has been introduced into the SUMS application as it offers several advantages; ie:

· Incorporates all the design features of Hibernate 3

· Allows ORM metadata to be specified in XML configuration files and/or Java™ 5 Annotations within the entity class

· Design by default – EJB3 specification implements a simplified design and framework

· Simplifies code by the need to only annotate exceptions from the default

· Introduces transactional processing using Java Transaction API (JTA) or non-JTA methods

But, use of JPA has its disadvantages, these are:

· Annotations can be held in the Entity Class giving rise to issues associated with increase of coupling between the ORM definitions and associated entity processing

· Object Relational Mapping (ORM) metadata is variant to that of Hibernate (and other providers)

· need to understand the implications introduced by the minimal configuration options of ‘Design by default’

Persistence is managed through a database transaction with ACIDic properties. Kodali and Wetherbee (pp.258-259) summarise ACIDic transactions are units of work with of the properties of Atomicity, Consistency, Isolation and Durability. These properties are used to identify one or more processes that logically connect to form an integral unit of work. A business process may comprise one or more database transactions. Initially, the SUMS application will manage its database updates using the methodology of “Resource-local transactions” described by Keith and Schincariol (2006,pp. 128-131). Resource-local transactions are implemented via a Transactional Context which is instantiated through the JPA EntityTransaction interface. This implementation offers the advantage of its compatibility with JTA UserTransaction interface enabling a future migration of a SUMS J2SE application to exploiting J2EE technologies.
2.5 Summary

This section has reviewed the architectural design of a web application using Java™ technologies with reference to requirements of SUMS and its component sub-systems.

The following section expands this discussion and analyses issues affecting SUMS and its components.

3 Analysis of SUMS and its Components
3.1 Introduction

Before the process of delivering a computer based software product can begin the software engineer must establish a process for gathering the product’s requirements within the organisation. It is necessary to identify all the stakeholders that will have an interest in any and all matters concerning the product’s development and implementation. This enables the software engineer to establish all the variations of support, interest, scope, objectives and terms of reference for the product throughout the organisation. By assessing these needs the software engineer can begin the difficult process of requirements elicitation and Pressman (2000, pp. 252-253) provides guidelines on the organised approach required.
At the client’s suggestion, requirements for the SUMS architecture and its Domain Object Model were initially to be based on the needs and implementation of the component SUMS-Submission.

Development using Java™ technology requires an Object-Oriented approach. Satzinger (2005, pp. 60-68) considers implementation of computer systems are enabled with use of Object-Oriented(OO) technologies. They establish communication between all interested parties as it incorporates the operation of natural objects in common-day use through analysis and design.
3.2 Project Management
Incremental Software Development Life Cycle (SDLC) can be likened to a waterfall where effort is concentrated according to the needs of the project at a particular phase. Regular weekly meetings with the client enabled project planning to follow an incremental SDLC using phases similar to that of the “IBM® Rational Unified Process®” (RUP). The Unified Process forms a core to the IBM (2008) “Rational Software Delivery Platform”. Eeles, Houston and Kozaczynski (2002) suggest IBM® RUP® provides a framework to deliver quality software on time and to budget. Each phase comprised a series of iterations using an appropriate discipline. Satzinger (2005, pp. 55-60) describes a typical set of Unified Process disciplines but advises a project manager should tailor these to suit their needs. Figure 8 illustrates the disciplines used by the author to manage work in progress as the project passed through its phases. Early phases saw a concentration in requirements elicitation and analysis while the latter phases saw a concentration in development, testing and documentation.

[image: image8.emf]Oct-07 Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Apr-08

Disciplines Inception

Business Modelling

Requirements

Analysis and Design

Development

Testing

Deployment

Documentation

Elaboration Construction Transition

PHASES

Figure 8: SUMS Architectural Framework Project Plan
The Unified Process portrays concepts and designs with a graphical tool called the Unified Modelling Language 2.0 (UML). Fowler (2004) describes the UML as a popular tool which enables communication between stakeholders and developers of a computer software system. UML graphs enable a common understanding of business processes, design and architecture. They are a fundamental tool used with Object Oriented technologies and used within the Unified Process.

3.3 System Requirements

3.3.1 Introduction
Requirements approved by the client during December 2007 can be viewed in Appendix 1. Changes were made during January 2008 to allow for changes raised during the Analysis and Design Phase.
Figure 9 illustrates the proposed component architecture of the SUMS application where each component is an individual Java™ 2 Standard Edition (J2SE) application sharing a central SUMS database. Database management will be provided through the persistence framework Hibernate with Java Persistence API (JPA) and the underlying Relational Database Management System (RDBMS). A RDBMS is a software product which manages and incorporates the use of a database. Its architecture manages memory and system resources linked to the Input/Output(I/O) processing of a database. It manages the I/O while coping with failures generated through the hardware and software platforms underlying the database and its constituent tables and files.

[image: image9.emf]SUMS component architecture

October 2007

SUMS-Registration SUMS-Allocation SUMS-Monitor

SUMS-Submission

External Examiner

Reporting

SUMS

SUMS-Assessment

DD SUMS v6 sub system architecture oct 2007.vsd version 0

Figure 9 SUMS Component Architecture
Separate URLs will be required for a user to access functionality provided by each SUMS component (sub-system).

With reference to Figure 4, a SUMS component is implemented using 2 distinct layers:

· Business functionality is provided through a web based User Interface

· Business Services to support the functionality of the User Interface and is provided by interfaces of the SUMS Domain Object Model
Delivery of this architecture provides focus for the provision of a framework supporting Change with future enhancement and development of the SUMS application.
The author implemented a version of the SUMS-Submission User Interface with its supporting Business Services interfaces to establish an initial design of the SUMS architecture and to illustrate its use.
Previous implementations of SUMS sub-systems were analysed to establish business requirements of the SUMS application. Work by Bui Hoang Phuong (2007) was analysed to establish business requirements of the
SUMS-Submission User Interface implemented by the author. Regular consultations with the client Dr. Jim Briggs established the technical requirements of the SUMS application and its architecture refer to Appendix 1.
Analysis of these requirements enabled the author to formulate an understanding of :

1. System Actors of SUMS-Submission, refer to section 3.3.2

2. Overview of SUMS-Submission business processes, refer to section 3.3.3

3. Functionality of the SUMS-Submission component, business processes and data flows, refer to section 3.3.4

4. Sequence of development according to inter-dependencies of the business functions, refer to section 3.3.5

3.3.2 SUMS-Submission System Actors

[image: image10.emf]Person

«inherits»

Staff

«inherits»

Student

3rd Marker

External Examiner

Moderator Supervisor

«inherits»«inherits»

«inherits»

«inherits»

SUMS-Submission

System Actors

Marker

«inherits»

DD SUMS Submission System Actors.vsd

Figure 10 Specialisations of the actor Person within SUMS-Submission
There are three actors who interact with SUMS-Submission user interface, these are:
• Students: Students are allocated to a Cohort using parameters such as year, part/full time, level of study, course, ‘school’, etc. A student will progress their studies through a series of units. Students produce artifacts for assessment and manage their submission according to the milestones set for a unit.
• Project Coordinator: Staff whom oversees unit assessments within a Cohort of students. They manage the milestones associated with submission of artifacts associated to a unit.
• Markers: Staff can are allocated to assess or mark the artefacts submitted by students. Markers can be one of three specialisations: Supervisor, Moderator or Third Marker
• External Examiners are not anticipated to use SUMS.

All the system actors can be generalized to an actor called person.
3.3.3 SUMS-Submission Use Cases Diagrams

Figure 11 is a UML Use Case Diagram providing a model for the functions performed by the system actors using SUMS-Submission. The model portrays functionality managed by the SUMS-Submission User Interface and the interaction of these functions between the system actors. It provides a perspective to enable a common understanding of the system requirements and enables a functional analysis between developer and customer.

[image: image11.emf]Project Co-ordonator

Unit Assessmemt

Submission and Management

Display Assessments

and Submission Status

Student

E-mail Notification

«extends»

«extends»

Upload Artefact

for Assessment

Receipt Generation

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

Supervisor

«uses»

Download Artefact

for Assessment

«uses»

Use Case Diagram

SUMS-Submission

Online Project Submission System (OPSS)

Prepared from Dissertation of Bui Hoang Phuong (2007) using

Clients's requirements in detail (pp 57-60)

Functional requirements (pp 22-24)

Design of Project Co-ordinator functions (p.40)

Student functions (p.41)

Supervisor functions (p.42)

Display and Update

Types of Assessment

«extends»

Display / Update

Unit Assessment

«extends»

«uses»

Logon

«uses»

«uses»

«uses»

DD OPSS Use Case Diagram v2.vsd

Figure 11 SUMS-Submission UML Use Case Diagram
3.3.4 SUMS-Submission Functional Requirements

Figure 11 provides an overview of functions provided by SUMS-Submission. Each function is decomposed to provide information for the design of:
1. Functionality of a web-based User Interface
2. Business services to be provided by the Domain Object Model and its interfaces.
This is summarized in Table 2 as follows.

	Use Case
	Description of Processes

	Logon / Logoff
	Logon user and identify their role.

All processes can only be executed by a user logged on.

Logoff user

	Unit Assessment Submission and Management
	Display Unit Assessments list;

Selection, unit name, unit-assessment details.

Allow Insert, Delete, Edit of a Unit Assessment.

Display types of assessment available and provide update with New, Insert and Delete.

E-mail notification of Unit Assessment changes to affected Students and Supervisors

	Display Assessments and Submission Status
	Display Unit Assessments associated with a Student’s project.

For each unit assessment; display type, opening date, deadline, status, file upload details.

	Upload Artefact for Assessment
	Display Unit Assessments associated with a Student’s project.

For each unit assessment; display type, opening date, deadline, status, file upload details.

Provide ability to select a file by ‘browse’ and ‘submit’ for upload.

Check date/time of artefact upload against unit assessment opening date and deadline; report accordingly.

Check filesize of artefact; report accordingly.

Calculate MD5 from content of uploaded artefact.

Calculate MD5 from date/time of uploaded artefact

	Receipt Generation
	Uses MD5.

Display project title, student name, assessment, file upload details, success or failure, MD5 for file content and MD5 for upload time.

	E-mail notification
	Notify Students and Supervisors of Unit Assessment changes by project co-ordinator.

Notify Student and Supervisor of assessment/artefact file upload details when successful.

	Download Artefact for assessment / marking
	Display available artefacts/assessments by project.

Table 2. Use Case descriptions of SUMS-Submission using OPPS Software Requirements Specification of Bui Hoang Phuong (2007)

3.3.5 SUMS-Submission Requirements Prioritisation

Dependencies exist between the functions described in the previous sections. It was necessary to progress in a sequence of stages to support development and testing within iterative cycles.
Sequence of development required is:

1. Authentication by a logon function provided information on a user and their role which was used to authenticate their requests during a session

2. Logoff processing enabled memory management associated with user’s role and and access to the SUMS application

3. Project (Cohort) Coordinator allocates milestones for units associated with a particular Cohort. The milestones are used by the student functionality to manage the submission of artifact(s) for assessment

4. Student functions to manage the submission and uploading of artifacts to enable the subsequent marking process
5. Marker functions to access student milestones, establish an individual’s progress and download artifacts for assessment
3.4 SUMS Domain Object Model Requirements Analysis

The SUMS Domain Object Model is central to the future development and enhancement of the SUMS application by providing a clear separation of its User Interface functions from the management of the SUMS database and common services.

SUMS User Interface business processes will call on services provided by the Domain Object Model through a set of interfaces. Each interface encapsulates a ‘single’ business function and will enforce advantages of Object-Oriented design principles in component based development. Each component will encapsulate its processing behind one or more interfaces enabling development of software that is readable, understandable, maintainable, extensible and testable. Packaging and documentation of the components must be such to promote re-use.
Management of the SUMS database occurs through the service provision and its design has the following requirements:
· Provide database integrity through the units of work (database transactions) that encapsulate an atomic set of business processes
· Use of persistence framework Hibernate with JPA

· Use of Java™ 5 (or above) technologies

· Support deployment of the User Interfaces as J2SE web applications

· Consider future deployment using J2EE technologies

The framework Hibernate will reduce cross-platform issues and provide a persistence mechanism that is scalable and performant. Deployment of Hibernate and JPA together with configuration of the SUMS database and its Relational Database Management System will require monitoring. This will provide information to tune the management of the SUMS database and its supporting processes.
3.5 Review of SUMS

Each SUMS component has been delivered in increments as separate J2SE web applications. The increment is associated with an artefact produced by a student towards their final assessment. Each increment has seen changes and extensions to the initial database design documented by Reed (2004) and Powell (2005). These changes have been coupled with a variation in design and implementation strategies. Before work could proceed, it was necessary to compile a central data dictionary and link the variation of implementations through the use of a version history. Appendix 2 is a result of the work undertaken by the author to establish a central data dictionary to enable further work, Dr. Jim Briggs kindly formatted the document to improve its use.
The central data dictionary was then used to create Entity Relationship Diagrams (ERD) to provide an understanding of the data and its flow through the SUMS components and the underlying SUMS Domain Object Model. Figure 12 provides an overview of the data flow through SUMS-Submission. Individual ERDs giving document flow according to role is held in Appendix 3.

[image: image12.emf]Unit

PK UnitId

UnitName

Final_Project

PK ProjectId

CohortId

UnitId

StudentId

ProjectTitle

Student

PK StudentId

PersonId

Person

PK PersonId

UserName

Password

FirstName

Surname

Person_email

PK EMailId

PersonId

EMailAdd

Marker_Capacity

PK MarkerCapacityId

ProjectId

MarkerTypeId

PersonId

Marker_type

PK MarkerTypeId

MarkerDescription

FileAttachment

PK FileAttachmentId

AttachedFile

FileName

FileSize

ContentType

Status

LastEdited

AttachmentTypeId

TimesLeft

MD5FileContent

MD5FileUploadDT

FileAttachmentTypes

PK AttachmentTypeId

Description

AllowedSize

MUnitMilestones

PK UnitMstnId

MilestoneId

CohortId

UnitId

MStudentMilestones

PK StudMstnId

ProjectId

StudentId

MilestoneId

DateAdded

LastEdited

StaffNo

FileAttachmentId

Milestones

PK MilestoneId

StartDate

EndDate

Status

Type - Final

Description

DateAdded

LastEdited

PersonId

AttachmentTypeId

Role_Id

1

*

1

*

1

*

*

*

*

1

*

*

1

*

1

1

*

*

1

*

1

*

1

*

Revised SUMS sub-system OPSS database design

Dave Dunford (2007/8)

Cohort Co-ordinator

PK co_cord_id

cohort_id

person_id

1

Roles

PK role_id

role_description

1

*

Cohort

PK cohort_id

Unit_id

project_start_date

project_end_date

*

*

Person_Roles

PK person_role_id

person_id

role_id

*

1

*

Staff

PK Staff_id

Person_id

1

*

1

*

1

*

1

*

Audit_Trail

PK Audit_Id

changes

*

Figure 12. Data Flow through SUMS-Submission
Creation of the central data dictionary and the ERDs enabled:

1. Understanding of SUMS database design

2. Understanding and use of individual tables

3. Validation of database tables content and design

4. Validation of database tables use with functionality requirements described in sections 3.3.2 to 3.3.4
5. Validation of relationships between the SUMS database tables

6. Provision of Foreign Keys to maintain relationships within the SUMS database

7. Establishment of naming standards to tables and fields

8. Establishment of data typing standards of table fields across the SUMS database
9. Development of SQL to create a SUMS database and a testing environment

10. Configuration descriptions associated with Hibernate and JPA entity declarations

Appendix 4 gives an overview of the data typing standards applied according to their use and declaration within the SUMS Architecture.
3.6 Summary
There is a shortfall in design of the Business Services provided by the SUMS Domain Object Model. Time constraints restricted the author to perform only detailed analysis for the SUMS-Submission component. Further work is required to consider the requirements and analysis of the other SUMS components. Hence, design of the SUMS Domain Object Model must enable Change when constructing the interfaces to implement Business Services.
4 SUMS Architectural Design

4.1 Introduction

Focus of the architectural design is to provide a framework which will support component based development of the SUMS web application enabling Change and future development with Java™ technologies.
The design will enable business functionality to be independently implemented through User Interfaces deployed with each SUMS component and share a common database. Management of the database is provided by the SUMS application.
Figure 4 illustrates an implementation of a SUMS User Interface (sub-system). The upper layer manages the User Interface and provides organization of the business processes. These processes issue requests for support, information and access to the SUMS database through the Business Services layer of the Domain Object Model. Each request is supported by an interface of a component in the Business Services tier.
Information is returned back to the User Interface by:

1. A returned instance

2. Fulfillment of required database entity instance(s)

3. Exceptions

Implementation of a SUMS component consists of 2 distinct phases:

· Creation of a web user interface using a presentation framework of choice, for example: Struts 2.0, Java Server Faces

· Extension of the interfaces within the Business Services layer.
The author provided an example deployment of the SUMS architecture by implementing a version of SUMS-Submission using Struts 1.2.

Design and Implementation of a SUMS User Interface using Struts 1.2 is discussed in Section 4.3

4.2 SUMS Application Architectural Framework
Web servers communicate across the Internet using a language known as the Hypertext Transfer Protocol (HTTP) and HTTP is the recognized communications mechanism for Internet browsers to access information from a web-site. A web application such as SUMS is managed by a Web Server which provides a single HTTP response to each HTTP request it receives from the browser of a user. HTTP has developed over a period of time and version 1.1 is now in common use; it is defined by RFC2616 published by the Internet Society (1999).
The SUMS architecture implements a web-tier application design standardized by Sun Microsystems (2008a) and implements the Model-View-Controller (MVC-2) pattern. SUMS architecture provides:

1. A typical View using JavaServer Pages technologies published by Sun Microsystems (2008b) which enables rapid and flexible development of dynamic web-page content
2. A typical Controller implementing business processes and database management mechanisms
3. database management within discrete units of work (database transaction) limited to a single HTTP request/response cycle

4. A typical Model encapsulating information for presentation by a View
5. A Business Services layer which abstracts the design and processing of the underlying database and its mechanisms away from the User Interface

6. Clear separation of Business Services provided to the User Interface through a series of well defined interfaces.
Figure 13 illustrates the layered nature of the SUMS architecture; this has been openly encouraged by use of open source frameworks:

· The version of the User Interface provided by the author implements Sun’s MVC-2 pattern using Struts 1.2
· Hibernate is a persistence framework which provides clear separation of database entities and their management with respect to the SUMS database. Hibernate enables translation of data between the application’s objects (instances) and the database relational row-column structure.

[image: image13.emf]Front Controller

(Struts Action)

View Helper

(JSP)

Dispatcher View

Session Façade provided through

Transactional Context of

Hibernate/JPA Entity Manager in

DD.SUMS.”sub-sys”.DOM.res

Business Delegation in

DD.SUMS.”sub-sys”.front

(POJO or JPA Entity)

Business Services Interfaces

DD.SUMS.Services

Entity Classes in

DD.SUMS.RDBMS.DOM

Data Access Object - DAO in

DD.SUMS.RDBMS.DAO

Hibernate / JPA

“Persistence Context”

SUMS RDBMS

“Presentation Tier”

“Visible Business”

“Persistence Layer”

centralised SUMS RDBMS

Encapsulate

 Business Services

Connect and Invoke

Returns

SUMS Architectural Design

Prepared by Dave Dunford

Key

Presentation Tier

Business Tier or

Domain Object Model

“Resource Layer” provides

Data Access Objects

managing RDBMS

Navigates

through

assessors

DD Overview of SUMS architectural framework v4.vsd

User Interface

Domain Object

Model

Co-ordinate

 Business Processes

Defines scope of

 database transaction

Returns

 database transaction

management

database transaction

Returns

Navigation

Figure 13 SUMS Architectural Design

A Controller delegates its information processing requirements to the underlying Business Services of the visible business tier. Information from the SUMS database is returned back to the User Interface as entity instances. An entity is a Plain Old Java Object (POJO) managed by Hibernate and contains data with business information from one or more database tables. The User Interface components can obtain further information from the database by using the accessors of the entities to navigate their way through the data structures. Hibernate (with JPA) provides Object Relational Mapping (ORM) tools which enables the navigation of the data structures held in the SUMS database. Design of the ‘paths’ navigated by the application enables performance by delaying Input/Output request to the database and utilizes features of Hibernate described by Bauer and King (2007, pp. 388-391) such as:
· “lazy loading”

· “Transactional-write behind”,
· “Auto dirty checking”
Hibernate (and JPA) abstract the management of the database access away from the application. It greatly simplifies the SUMS architecture by removing processing concerns of the SUMS database and the Relational Database Management System.
The Controller and View of the User Interface manage their request for information through two sources. Business Services supply information by providing access to the database through instances of the entity classes. This information can be extended by navigating the SUMS database through accessors of the entity instances. In fact, Business Services provide the beginning of the data access – Object Relational Mapping (ORM) metadata and accessors provide paths of further access through the database structure and its entities. Hibernate’s “lazy loading” feature enables an application to delay database access until it is actually required by the User Interface Controller or View. Hibernate (with JPA) has removed the need for the design to consider:

· Open / closing of database connections
· Configuration and management of the database through the Java Database Connection (JDBC) API
· Use of verbose SQL statements used to manage Input/Output access to the database
· Complexities of database synchronisation and locking mechanisms as they are controlled by “dirty checking” mechanisms of a transaction’s memory cache described by Bauer and King (2007, pp. 388-391)
A User Interface Controller defines the scope of database transaction and its associated memory cache is managed by Hibernate. At the client’s request, design of the business processes within an request-response cycle will form a discrete set and should be used to manage a unit of work providing an atomic database transactional process. Design and implementation of a SUMS User Interface must enable Hibernate to manage the database through a series of database transactions linked to one request-response cycle.

Implementation of conversations spanning requests and its associated management of entities through their persistence lifecycle is not considered.
ORM tools provided by Hibernate and JPA implement good OO practice by abstracting the ORM metadata away from the application and encourages re-use by implementing the entity classes as Plain Old Java Objects (POJOs).
4.3 Presentation Tier Design
A web application such as SUMS is managed by a Web Server which provides a single HTTP response to each HTTP request it receives from the browser of a user. There are different versions of Internet browsers in common use. Their rendering of the information from a HTTP response and presentation to the end user varies by vendor according to their design and interpretation of the response. For these reasons, implementation of a User Interface must evaluate its intended audience and the browsers in common use.
A separate project is being undertaken by Kate Stainton-Ellis to design and implement a standard User Interface for a SUMS component. To maintain focus on development of the SUMS architectural framework, the author implemented a simple User Interface based on work previously done by Bui Hoang Phuong (2007).
Usability, accessibility, presentation, information flows, data processing and Human-computer interaction (HCI) analysis of a SUMS User Interface has not been included in this work. For these reasons there is no provision for:

· A wireframe analysis and design of a typical page
· Use of storyboards giving information flow

· Use of mock-ups to evaluate usability, accessibility, visual presentation and HCI performance
· Web architecture Map
Validation of the HTML content was not performed by the author, but interested readers should refer to:

· World Wide Web Consortium (2008a) and obtain a HTML validator

· World Wide Web Consortium (2008b) and obtain a Cascading Style Sheets validator

· World Wide Web Consortium (2008c) and evaluate possibilities of ‘broken links’

· World Wide Web Consortium (2008d) and evaluate accessibility requirements of page content

· Nielsen (2008) and gain an understanding of web usability

Usability tools, like ‘Bobby’, can provide an evaluation of the usability of a web page but their results should be treated with caution. Implementation of a Search Engine Optimisation strategy into page content of a SUMS component is not appropriate, but more information can be obtained from Google™ (2008).
Change and its control is a challenge to developers and can introduce unexpected conditions to the web server; these are presented to a browser through status codes and a variation of supporting information. Implementation of error handling and associated error pages are essential to maintain the security and integrity of a web application. Basham (2004, pp. 457-464) discusses the need to provide suitable Error pages according to conditions as it could provide useful information to a hacker. For example: HTTP Response Code 500 is normally associated with exceptions or execution problems associated with a web application and a web server may present information such as that of a Java Stack from the Java Virtual Machine (JVM) running a web application developed using Java™ technologies.
Development of custom tag(s) and their implementation into a View could support administrator alerts, logging and exception or error processing. This is a consideration for future development.
4.3.1 An implementation of a SUMS User Interface View
View of a SUMS User Interface is implemented with JavaServer Pages (JSP) technologies published by Sun Microsystems (2008b). Use of JSP enables rapid and flexible development of dynamic web-page content.

Common elements of A JavaServer Page can be collected into reusable components. JSP components are referred to as fragments or templates and Basham (2004, pp. 398-408) describes a JSP template has two varieties, ie: “Static” or “Dynamic”.

Static JSP templates introduce standard non-moving features into a web-page such as headers and trailers and are implemented with the include directive.

Dynamic JSP templates are used to provide a dynamic variation into the structure of a web-page at run-time and are implemented with the JSP include standard action.

Design and presentation of the User Interface for SUMS-Submission is static and uses JSP directives to include fragments as reusable components.
Figure 14 illustrates a typical JavaServer Page for the SUMS application developed by the author using reusable template components.

[image: image14.emf]<%--

an example implementation of a SUMS user interface as a JSP

--%>

<%@include file="/WEB-INF/jspf/WebPageHeader.jspf" %>

<%@include file="/WEB-INF/jspf/TaglibStuff.jspf" %>

<html:html xhtml="true">

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title><bean:message key="CohortCoOrd.title"/></title>

</head>

<BODY>

<%@include file="/WEB-INF/jspf/SecurityCheck.jspf" %>

<%@include file="/WEB-INF/jspf/sums_header.jspf" %>

<%@include file="/WEB-INF/jspf/sums_sub_sys_header2.jspf" %>

<%@include file="/WEB-INF/jspf/ExceptionMessage.jspf" %>

<%@include file="/WEB-INF/jspf/userControl.jspf" %>

<%@include file="/WEB-INF/jspf/Cohort_Selection.jspf" %>

<%@include file="/WEB-INF/jspf/sums_sub_sys_footer.jspf" %>

<%@include file="/WEB-INF/jspf/sums_footer.jspf" %>

</BODY>

</html:html>

Gives HTML encoding, etc

Declares taglibs, eg:

Struts, JSTL

Controls web page injection as JSP

checks it can access the HTTP

Session attribute holding the user’s

logon information, eg: Person Instance

Provides top banner

Additional banners, eg:

menu, breadcrumb trail,

etc.

Issues an error message supplied

by the HTTP session attribute

"ExceptionMessage"

Welcome message

Numerous jsp fragments can be

included to build the body of the

page

Page sub footers

Page main footer

a typical JSP structure explained.vsd

Figure 14 typical JavaServer Page from the SUMS application using reusable components
Dynamic content can be introduced into a JavaServer Page by using the unified Expression Language (EL) of JavaServer Pages Standard Tag Library (JSTL) provided by Sun Microsystems (2008c). This frees the developer from web-page design and its content management as the designers do not need to understand Java™ technologies. But, implementation of “scriptless JSPs” described by Basham (2004, pp. 341-415) requires the developer to consider and provide a View using JSP technologies with flexible design utilising reusable templates.
Figure 15 illustrates an implementation of a “scriptless JSP” for a View of the SUMS-Submission developed by the author. Dynamic content is introduced into the View from information within the entities of the SUMS database. This example illustrates the gathering of information as the View uses the accessors of the entities to navigate its way through the SUMS database.

[image: image15.emf] <table border="0">

 <c:forEach var="fp" items="${finalprojects}">

 <c:forEach var="fp_mstone" items="${fp.studentMilestonesCollection}">

 <tr>

 <td width="100">Project Title:</td>

 <td> ${fp.projectTitle}</td>

 </tr>

 <tr>

 <td width="100">Unit:</td>

 <td> ${fp.unitId.unitName}</td>

 </tr>

 <tr>

 <td> Description:</td>

 <td> ${fp_mstone.milestoneId.description}</td>

 </tr>

 </c:forEach>

 </c:forEach>

 </table>

JSP snippet exploring use of JSP EL.vsd

Session attribute “finalprojects” is an ArrayList of the

ADT FinalProject (an entity class), and its entries are

processed through the local variable “fp”

A generics Collection with Information on Student

Milestones associated with a Final Project

(addressed by “fp”) is obtained by an accessor of

the FinalProject entity and allocated to local

variable “fp_mstone”

Displays the unit name related to a

final project and is accessed

through the accessors of the

entities FinalProject and Unit

Displays the milestone description of a

student milestone from the genrics

collection addressed above and is

accessed through the accessors of the

entities StudentMilestones and

Milestones

Figure 15 A typical View using a “Scriptless JSP” design
4.3.2 An implementation of a SUMS User Interface Controller
A SUMS User Interface Controller will call interfaces managed through the Business Services. These services are classified according to a user’s role determined at Logon, refer to Section 4.3.3 for a discussion on implementation of a SUMS User Interface Logon Controller.

Table 3 provides an overview of the service classes, which can be extended as roles are added.

	Role
	“Business Services” Interface Class
	HTTP Session Attribute

Check names

	Student
	StudentControl
	“studentCtl”

	Marker
	MarkerControl
	“markerCtl”

	Project / Cohort Coordinator
	CohortCoordinatorControl
	“cohortCtl”

Table 3 Classification of Business Services by Role
A User Interface Controller manages a request within a Browser’s HTTP Session and its logic is implemented as a separate thread. Each thread will manage database access through the interfaces of the Business Services. The Controller manages the Input/Output (I/O) mechanisms to the SUMS database through a transaction. Atomicity of the transaction is restricted by the Controller through the processing of the business logic associated with a unit of work encompassed by the HTTP Request-Response cycle. This implements the conversational processing pattern of “Session-per-request” defined by Bauer and King (2007, p. 391).

Business Services utilise Data Access Objects (DAO) from the underlying Resources layer (refer to Figure 13) to initiate the I/O mechanisms to the SUMS database and provide processing used to manage the database transactions.
Figure 16 provides a sequence diagram of a User Interface Controller where possible updates to the database has occurred, it illustrates logic to upload an artefact by a student to the database and executes 4 distinct events in sequence:

1. logic to manage the upload processing within a database transaction

2. PersistenceManagerDAO closes a database transaction and provides interfaces to manage the commit process (and possible rollback)

3. Closure of database connection(s)

4. logic to manage processing related to the success or failure of the database update(s)

[image: image16.emf]Request Session Person StudentControl UploadFile PersistenceManagerDAO StudentForm

getFile

getStudmstid

prepareForUpload

performUpload

commitTransaction

New

getSession

getSession("person")

getAttribute("studentCtl")

checkCommitStatus

rollbackTransaction

clearEntityManager

closeEntityManager

All database I/O for a unit of work (transaction) is COMPLETE

Database Commit failed

Database transaction has closed

Issue Logic such as e-mails to confirm successful upload

UI student upload controller.vsd

Figure 16. UML sequence diagram illustrating a Controller’s Events
A User Interface Controller will use the Business Services to provide:

· Access to commonly used routines, eg: Uploading of files

· Input/Output processing associated with the database
4.3.3 An implementation of a SUMS User Interface Logon Controller
JavaServer Page technologies and entity instances managed by Hibernate (with JPA) is a powerful combination in the delivery of scalability to a web application. Input/Output (I/O) database processing is spread across the request / response cycle by:

· Just in Time (JIT) processing of the View as it navigates through the database via entity accessors and encouraged by Hibernate’s “lazy loading”
· Removing the need to read ahead by the Controller when providing data for the View
· Removing unnecessary I/O by the Controller as the View only reads what is required
· Enabling Hibernate to manage the I/O and buffering of the database accesses.

Performance of a User Interface Controller and its related View (s) is controlled by a combination of:
1. Structural design of the underlying Relational Database Management System and the database
2. identifying key entity instances and their minimum content giving support to the ‘follow-on’ navigation of the database

3. Object Relational Mapping (ORM) metadata design and supporting accessors to enable efficient use of Hibernate’s “lazy loading”.
Figure 17 is a UML sequence diagram of a User Interface Logon Controller implemented by the author. Considering the student role, this illustrates a minimal database I/O was performed to obtain the Final Project and its associated Milestones. Figure 15 is snippet of the ‘follow-on’ JavaServer Page and it illustrates completion of display fields using entity accessors to navigate the SUMS database.

[image: image17.emf]Request Session UserControl Person MarkerControl PersistenceManagerDAO StudentControl

login

findFinalProjectByStudent

login

findFinalProjectByMarker

New

getSession

New

loginUser

closeEntityManager

All database I/O for a unit of work (transaction) is COMPLETE

Database transaction has closed

Issue Logic for nextPage

UI logon controller sequence diagram.vsd

New

ArrayList of Student entities

findStudentMilestonesByStudent setAttributes

findRole

New

CohortCoordinatorControl

setAttributes

login

findAllCohorts

setAttributes

Role = Student

Role = Marker

Role = Cohort Coordinator

Figure 17 UML Sequence Diagram of a SUMS User Interface Logon
The User Interface logon and logoff Controllers in the example SUMS-Submission provided extends concepts introduced by Husted’s (2004, pp. 5-6) logon application.

On successful logon, the Person entity of the authorized user is assigned to a HTTP Session attribute ‘person’ and Figure 18 illustrates code included from a JavaServer Page (JSP) fragment to check that an authorized and authenticated user is calling the JSP. It reduces the possibility of web page injection by a possible hacker.

<%-- Security check

effects of web page injection is reduced by ensuring the Session attribute of the

person is logged in exists and hence has been through the logon process

--%>

<logic:notPresent scope="session" name="person">

<jsp:forward page="/pages/securityIssue.jsp"/>

</logic:notPresent>
Figure 18 JSP fragment calls a jsp to register a possible security violation.
Access to Business Services is provided through an instance of the Control class according to a user’s role (refer to Table 3 in Section 4.3.2). It is created by the User Interface Logon Controller. This Control class is linked to the browser’s session by allocating it to an HTTP Session attribute.
Appendix 5 is documentation supplied to enable the development of the User Interface SUMS-Submission.
4.4 Business Services for Presentation layer

Section 4.3.3 describes an example User Interface Logon Controller and its allocation of a Control class according to a user’s role.

[image: image18]
Figure 19. UML Class Diagram Business Services provided by SUMS DOM.
Figure 19 is a UML Class Diagram of Business Services used by SUMS-Submission provided by the SUMS Domain Object Model. A Service is provided by a component of the Control Class and their implementation is documented in Appendix 5.
Instantiation of a Control Class is according to a user’s role, refer to Table 3 in Section 4.3.2 and a component of the Control instance provides access to the underlying SUMS database and its RDBMS. The component’s interface controls its application and their Stateless implementation enables scalability of the SUMS application. Stateless instances do not hold information and there can be multiple copies of them across a network and could reduce network traffic.
Memory leakage is an important issue for web applications and the User Inteface Logoff Controller should be designed to remove all HTTP session attributes into garbage collection. Memory associated with the database entity instances is managed by the persistence framework.
4.5 Resource Layer Design
The client requested the use of the persistence framework Hibernate to manage the SUMS Relational Database Management System. Business Services issue their database Input/Output (I/O) requests through its interfaces. These interfaces issue their I/O request through use of the Data Access Objects (DAO) pattern. Minter and Linwood (2006, pp. 52-56) advise the DAO pattern separates the I/O operations of the database entity from its POJO. The author used a concrete implementation allowing each database entity class to have its own DAO. Variations of I/O access to a database entity are implemented as separate interfaces to its DAO. Hence, extension of a DAO provides new types of access to a database entity.
Each concrete DAO extends a base Class DAO. This base Class encourages the re-use of logic to control the allocation of persistence and transactional contexts of a database transaction. These contexts are used to manage the memory cache controlled by the persistence manager instantiated through Hibernate.
4.6 Persistence Layer Design

A fundamental requirement of the SUMS architectural design was to provide a framework that utilized the database schema from previous implementations of SUMS sub-systems. Any changes to the SUMS database schema were limited to essential only. This enables migration of previous SUMS sub-system implementations to use the architecture proposed by this document. The author agrees with Bauer and King (2007, p. 323) that change to an existing database schema could increase the cost of the migration process.
Changes to the database schema should be implemented on successful migration of the SUMS sub-systems to use of the new architecture.
4.6.1 Database Tables
The existing database schema uses different primary key models, ie: natural or surrogate. Natural models have a business meaning and their use is deprecated as Change to business requirements can introduce conflicts of interest. Such design, is normally inherited from legacy implementations. For example: Table PERSON_ROLES has a composite key comprising PERSON.PERSON_ID and ROLES.ROLE_ID. This increases the complexity of the Object Relational Mapping (ORM) metadata required to support business functionality. ORM metadata could be simplified by introducing table PERSON_ROLES with a surrogate primary key and normal foreign key relationships to the tables PERSON and ROLES. This implementation is a preferred methodology according to Bauer and King (2007).
4.6.2 Entity Classes
Hibernate on its own requires the Object Relational Mapping (ORM) metadata to be implemented into XML configuration files. This decouples the ORM content of the database entity classes from their POJOs and encourages reuse. The ORM XML can be easily altered and deployed. Minter and Linwood (2006, p.7) identify a strength of Hibernate 3 is the well formed ORM Document Type Definition (DTD) which enables easy manipulation of the XML configuration files using a good editor that provides autocompletion and autovalidation.
Introduction of JPA enables the ORM metadata to be declared as Java™ 5 Annotations within the entity class and a good IDE will support autocompletion and autovalidation. But, use of Annotations could be viewed as pollution to an entity class and reduces the cohesion of an ORM implementation. Kodali and Wetherbee (2006, p.7) propose an advanced strategy that uses a mixture of XML and Annotations. Use XML for ORM parameters associated with the database deployment and use Annotations to provide ORM metadata linked to entity relationships and transactional requirements (this is more closely associated with implementation of EJB 3.0 into an application using J2EE).
Combination of ORM metadata in XML configuration files and Annotations on the entity classes provides an organization with flexibility during development and deployment.
The author implemented a version of SUMS-Submission using only Java™ 5 Annotations as this simplified the implementation of the SUMS Architecture.
4.7 Summary
This section proposed a design to the SUMS architecture based on user and technical requirements specified by the client. Change has been incorporated into the design by its separation into layers, use of CBSE techniques relevant to Java™ Object-Oriented technologies and inclusion of 3rd party tools such as Hibernate and Struts. Section 5 illustrates the implementation of this design through the SUMS-Submission example provided by the author.
5. A SUMS Implementation

5.1 Introduction

The SUMS Architectural framework was implemented in several phases after elicitation of requirements from the client. It was necessary to establish a central data dictionary which provided a version history of the SUMS database design with reference to previous implementations. The version history provides the variation in strategy of these implementations and enabled the author to evaluate development of SUMS-Submission provided with this document. Analysis of the data dictionary provided information for the development of SUMS database Entity Relationship Diagrams (ERD), refer to Appendix 3. The ERDs provide information to confirm:

· Table definitions – data structures with a primary key

· Business processes and their supporting entities

· relationships between tables and the foreign key requirements

· SQL to create a test database

· Table definition translation into Hibernate entity classes

· Object Relational Mapping requirements of the entity classes

Design and construction of the SUMS architecture with its Domain Object Model was expanded during iterations within four main phases of work linked to the development of the SUMS-Submission User Interface Controller and View components. These phases were:

1. Logon and Logoff of a user and identify their role

2. Project / Cohort Coordinator business processes

3. Student business processes

4. Marker business processes

Each iteration within a phase enabled thorough testing of the components and their integration into a flexible framework as development progressed.

Implementation of a SUMS sub-system consists of 2 distinct phases:

· Creation of a web User Interface where business processing is managed through a series of Views and Controllers, see section 5.3.1
· Management of database access and other services through the interfaces of the Business Services provided by the SUMS Domain Object Model, see section 5.3.2.
The author provides an example implementation of the SUMS Architecture using the Business Process requirements described by Bui Hoang Phuong (2007).
5.2 Development Tools

The SUMS application is executed on a Java™ platform. Sun Microsystems (2006) created the Java™ platform as a collection of utilities which provides a run-time environment for the execution of computer systems developed using the Java™ programming language. The Java™ platform provides a virtual machine (JVM) which can consistently execute Java™-based applications on most hardware and software combinations.
5.2.1 Hardware

The SUMS application use of Java™ technologies enables development to proceed irrespective of its final implementation hardware and software platform. The author developed the SUMS architecture and the example SUMS-Submission on a laptop using a Microsoft® Windows® XP Professional Edition operating system and the following specification:

	Model
	Dell® Inspiron 1501

	CPU
	AMD Turion(tm) 64 X2 Mobile Technology TL-50

	Memory
	896 Mb at 1.60GHz

	Hard disk
	71.4 Gb

	Screen
	15.4 inches

	Graphics Processor
	ATI Radeon Xpress 1150

5.2.2 Software

5.2.2.1 MySQL™ database server

University of Portsmouth currently uses Oracle™ as the Relational Database Management System (RDBMS) to support the database activities of the SUMS Online Project Marking System. It is understood that Oracle will continue to be used for future implementations of SUMS utilizing the architectural framework devised by the author. The SUMS Domain Object Model uses the persistence framework Hibernate 3 to manage the underlying RDBMS. Hibernate 3 supports dialects of various RDBMS platforms through the configuration of the application’s persistence unit. This enabled development to proceed using MySQL™ database server 5.0 as the underlying RDBMS. Use of the MySQL™ database server is controlled by the GNU General Public License published by MySQL AB (2005).
5.2.2.2 MySQL™ Administrator

MySQL™ Administrator provided a graphical user interface to enable administration and monitoring of the database systems used during development of the SUMS architectural framework. MySQL™ Administrator can be downloaded from MySQL AB (2008) and its use is controlled by a GNU General Public License.
5.2.2.3 MySQL™ Query Browser

MySQL™ Query Browser provided a graphical user interface to enable creation and maintenance of databases used during development of the SUMS architectural framework. MySQL™ Query Browser can be downloaded from MySQL AB (2008) and its use is controlled by a GNU General Public License.
5.2.2.4 Java™ Technology

The SUMS architectural framework was developed with Java™ 5 Development Kit as this was sufficient to support all coding structures employed, for example: Annotations on the JPA entity classes
5.2.2.5 NetBeans

There are several IDE (Integrated Development Environment) available for development of Java™ web applications. Netbeans is an open source IDE provided by Sun Microsystems. The author chose to develop the SUMS architectural framework using Netbeans 5.5 as it was a stable release and included support for the Java™ 5 Development Kit with run-time environments for Standard and Enterprise Editions, JavaServer Page 2.0 technology and Struts 1.2.9. The author used an installation of Netbeans 5.5 that came bundled with the web container Apache Tomcat 5.5.17 which was suitable for the development of the SUMS architectural framework. The University of Portsmouth will implement a SUMS sub-system as a single J2SE installation using the web server Apache with Tomcat as a web container.

Netbeans 6 became Generally Available in the initial stages of the project, but the author considered that it did not offer significant advantages to the development of a J2SE web application like SUMS.

The author would consider any future developments of the SUMS application to use Netbeans 6 for the following reasons:

· Recent updates has improved its stability

· Recent acquisition of MySQL AB by Sun Microsystems has enabled the IDE to include a MySQL toolset

· Improved support of Enterprise Edition development using Enterprise Java Beans (EJB) 3.0

· Bundled application server GlassFish

These enhancements would support the development of the SUMS architectural framework to utilize EJB 3.0 and implement it as a full J2EE web application. This would improve the scalability of the SUMS application as its components could be located across a network of servers. Database operations and integrity would be managed by an Application Server and not by the SUMS application.
5.2.2.6 Macromedia Dreamweaver

The sample SUMS-Submission required development of simple web-page deisgns using JavaServer Page technologies and Macromedia Dreamweaver was used as a HTML editor.
5.2.3 Problems found on development tools

Conflicts in execution occurred between the Netbeans 5.5 runtime environment and the MySQL™ GUI tools (refer to 5.2.2.2 and 5.2.2.3), which could only be resolved by restarting Windows. Sun Microsystems (2008d) announced in February 2008 the release of Netbeans 6.1 which integrates of MySQL™ GUI tools into the IDE. Use of Netbeans 6.1 would have been great benefit to the author during development.

The treatment of the Query Languages (QL) by published work provided by Hibernate, JPA and EJB initially appeared confusing. Keith and Schincariol (2006, pp. 193-195) consider application of new QL practices are challenging and suggest their readers consider the development of an “application for Testing Queries”. The author utilised the code provided by Keith and Schincariol (2006) and created the role ‘Query’ to enable development and testing of JPA QL statements against the SUMS database.
Extreme caution must be taken to ensure the ‘Query’ role and its associated code is not implemented into a ‘live’ environment.

5.3 Implementation of a SUMS sub-system
Figure 4 illustrates an implementation of a SUMS sub-system (component). The upper layer manages the User Interface and provides organization of the business processes. These processes issue requests for support, information and access to the SUMS database through the Business Services of the Domain Object Model.

Implementation of a SUMS component consists of 2 distinct phases:

· Creation of a web User Interface using a presentation framework of choice, for example: Struts 2.0, Java Server Faces

· Extension of Business Services interfaces provided by the SUMS Domain Object Model.

5.3.1 A SUMS User Interface implementation

A Web-site is an organisation’s portal to the outside world and its design, infrastructure and implementation sends a clear message to its visitors. A SUMS User Interface is not an exception although its audience is limited to those within the University of Portsmouth.

Creation of a typical SUMS User Interface web-page to be used as a standard will enable rapid deployment of SUMS sub-systems and give a consistent, usable ‘look and feel’ across the whole application. This rapid deployment is enabled by identifying fragments of re-usable templates within a typical web-page.

Figure 14 in Section 4.3.1 Illustrates how the JavaServer Page (JSP) include directive can be used to build a web-page comprising fragments of re-usable components. Also global changes to a web-site are easily implemented through a single change to a JSP fragment.

Figure 15 in Section 4.3.1 illustrates the introduction of dynamic content from the SUMS database using Expression Language (EL) of the JavaServer Page Standard Tag Library(JSTL). Use of JSTL EL in a JSP to obtain information from the SUMS database requires careful design of table structures, Object Relational Mapping tools and entity classes which support the navigation of the SUMS data structures.

These two main features of JavaServer Page technology is sufficient to create the simple User Interfaces implemented in the SUMS-Submission example provided by the author.

5.3.2 Business Services of Domain Object Model
A SUMS User Interface issue requests for support, information and access to the SUMS database through the Business Services of the Domain Object Model. Each request is supported by a component of the Business Services which is called through an interface.

Information is returned back to the User Interface by:

1. A returned instance

2. Fulfillment of required database entity instance(s)

3. Exceptions

Appendix 5 provides an overview of the interfaces implemented by the author and processing exceptions is handled in a variety of ways. Business exceptions such as invalid password were allocated a specific code enabling the User Interface to control its business logic. Failure to obtain information on input operations from the database receives generic treatment by a null return. This enables the User Interface to manage a lack of information event irrespective of its cause. It is a question of implementation if a User Interface should be concerned with the cause of a null return on an input operation. Null returns could be managed by:
1. Returning a Business Exception identifying the cause of the input operation failure, eg: no data or a persistence failure OR
2. Returning null and remaining ignorant to the reason for lack of information and allowing the Domain Object Model to manage any database failure.

The author chose the second option as this provides cleaner code within the User Interface Controller.
Interfaces of the Domain Object Model do not directly return information accessed from the database and the Data Transfer Object (DTO) pattern is not used by the SUMS Architecture. Business Services are called by a User Interface to enable access to information held in the databases through a structure of entity instances managed by the persistence framework Hibernate (with JPA). Careful design of these data structures and its processing enables the User Interface to navigate its way to the data it requires on a Just in Time basis. This spread of the database Input/Output processing enables performance and scalability of the SUMS application.

Business Services provide access to the database through a Resources layer which itself is separated into layers, ie:

1. Data Access layer

2. Persistence layer

3. Relational Database Management System

4. SUMS database tables

The database management mechanisms provided by the Business Services and the Resources layers offer all the advantages of Component Based Software Engineering.
5.3.3 Data Access Layer of the SUMS DOM Resources
Business Services issue requests for database access via Data Access Objects (DAO). Use of the DAO pattern decouples the Business Services from the Persistence Layer and it enables the SUMS application to be autonomous of the persistence framework provider. It enables the SUMS application to change the vendor of its persistence framework.

Each database entity has its own DAO. Interfaces within a DAO satisfy the request for database processing issued from an interface of the Business Services. Database Input/Output requests are issued to the Persistence Layer using:

1. Calls to methods (interfaces) within the persistence framework libraries OR

2. Queries composed from the Query Language (QL) of the persistence framework

Interfaces provided by the PersistenceManagerDAO enables a SUMS User Interface to encapsulate business processes that are logically connected into unit of work or database transaction. This enables the User Interface to manage the integrity of the database as it supports the business processes of the SUMS application.

Examples of database transaction implementations are provided in section 4.3.2.
5.3.4 Persistence Layer of the SUMS DOM Resources
The persistence framework Hibernate (with JPA) offers huge advantages in the implementation of the SUMS application and its sub-systems (components). The highlights are:

· Abstracts Java Database Connection API away from the application
· Removes use of verbose CRUD (Create, Read, Update and Delete) SQL

· Provides performant management of RDBMS and database processes

· Enables database integrity with transactional processing

· Manages translation of Object-Oriented (OO) technology with relational database technology

· Encourages use of good OO practice by example, eg: entity classes implemented as POJOs (Plain Old Java Objects)
· Removes vendor lock-in from the underlying RDBMS via its provision of dialects

The lowlights are:

· Object relational mapping (ORM) tools and concepts are complex

· Poor application design is possible due to ORM complexity

· Memory leakage caused by un-necessary update tracking of read-only entities

· Monitoring is a constant issue to enable tuning of all database processing to maintain performance and scalability.

Future development of the SUMS application may require it to access the database across a network and the use of Hibernate (with JPA) enables this migration by alterations to the configuration of its persistence mechanisms and transaction processing.
5.4 SUMS-Submission – An Example Implementation
Implementation of a SUMS User Interface component(s) requires:

· Creation of a web user interface controls using a presentation framework of choice, eg: Struts 1.2.9, refer to 4.3.1
· Creation of View(s) from a typical web-page using JavaServer Page technology, refer to 4.3.1
· Creation of Controller(s) within a framework to provide business functionality within atomic units of work allowing management of database updates, refer to 4.3.2
· Use of Business Services to manage I/O processing of the SUMS database, refer to 4.4
· Use of Business Services to manage common processing requirements of Controllers, refer to 4.4
· Access to the Model(s) by establishing paths to the SUMS database entities and enabling their navigation by the View(s) for display purposes, refer to 4.3
· Extension of the interfaces within the “Business Services” on an as required basis, refer to Appendix 5
Management of Project artefacts associated with units of study undertaken by a student provides a discussion on the implementation of SUMS-Submission User Interface and its components.

5.4.1 A SUMS User Interface Logon implementation

SUMS-Submission manages processes associated with the submission of artefacts. These processes vary according to a user’s role.

A Logon mechanism is provided to authorize a user and authenticate their role within SUMS-Submission.

[image: image19.png]UoP SUMS system

UoP SUMS-Submission
Username:
Password:
Top sub system footer

UoP SUMS footer

Figure 20 SUMS-Submission Logon View example

Appendix 6.1 illustrates the JavaServer Page technology used to build the SUMS-Submission logon View, an example is displayed in Figure 20. The Logon View is constructed with reusable components and utilises a structural design of a typical SUMS User Interface View described in section 4.3.1.

Submission from the Logon View could see control being passed to the Logon Controller and its design is discussed in section 4.3.3.

Figure 21 provides highlights of the code used to implement a SUMS User Interface Logon Controller and points of particular interest are:

· Business Services common to the logon process are provided through interfaces of the component UserControl

· Business Services associated to a student role are provided through interfaces of the component StudentControl

· Access to the SUMS database is provided by these Control components of the Business Services
· Database management is abstracted away within the interfaces of the Control components

· Developer identifies a point to close database access.

Interfaces of the Business Services Control components decouple implementation of a SUMS User Interface from the underlying Domain Object Model.

[image: image20.emf]/* LogonAction.java */

package DD.SUMS.OPSS.front;

imports

public final class LogonAction extends Action {

 public ActionForward execute(....)

 throws IOException, ServletException {

 String username = ((LogonForm) form).getUsername();

 String password = ((LogonForm) form).getPassword();

 Person person = null;

 HttpSession session = request.getSession();

 UserControl userctl = new UserControl();

 try {

 person = userctl.loginUser(username, password);

 session.setAttribute(Constants.USER_KEY, form);

 session.setAttribute("person", person);

 }

 catch (ExceptionUserNotExist e) {

 exceptionMsg = username + " does not exist";

 }

 catch (ExceptionUserNotUnique e) {

 exceptionMsg = username + " is not unique";

 }

 catch (ExceptionInvalidPassword e) {

 exceptionMsg = username + " provided invalid password";

 finally { }

 if (person == null) { manage this error }

 else {

 StudentControl studentCtl = new StudentControl();

 session.setAttribute("studentCtl", studentCtl);

 List<Student> studentList = studentCtl.login(person);

 if (studentList.isEmpty()) {

 role = userctl.findRole(person);}

 else {

 List<FinalProject> fpList = studentCtl.findFinalProjectByStudent(person);

 session.setAttribute("finalprojects", fpList);

 List<StudentMilestones> sMList = studentCtl.findStudentMilestonesByStudent(person);

 session.setAttribute("fp_mstone", sMList);

 }

 session.setAttribute(Constants.ROLE_KEY, role);

 if (nextPage == null) {

 if (exceptionMsg == null)

 { nextPage = mapping.findForward("logon"); }

 else

 { request.setAttribute("ExceptionMessage", exceptionMsg);

 nextPage = mapping.findForward("logon");

 msgLog = username + " failed to login as " + exceptionMsg;

 log.info(msgLog);

 } }

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.closeEntityManager();

 return nextPage;

 }

} // End LogonAction

a example UI logon controller.vsd

Extends the Struts Action

SuperClass

Get information from the Logon View

using associated Struts ActionForm

New Instance of UserControl provides

interfaces managing the “Business Services”

for general user login

“Business Services”

loginUser:UserControl provides

authorisation and authentication

Exceptions from

loginUser:UserControl

used to control general

user login issues

“Business Services” interface

login:StudentControl is used to identify if

the user has a Student role

Not a student - find other roles

“Business Services” of

StudentControl are used to

establish beginnings of paths

enabling following views to obtain

information during ‘navigation’ of

the SUMS database, refer to

section 4.3.1

Close SUMS database

connection

Figure 21 Implementation of a SUMS User Interface Logon Controller
Successful logon will present a View giving status of a student’s work which has been linked to various projects. Refer to Figure 22.

5.4.2 SUMS-Submission Student’s work User Interface
[image: image21.png]Googe]- = x

& -9 - @ O B [htpifocaihostisnss/opss._s.5_valLogonSubmitdo B

UoP SUMS system
UoP SUMS-Submission Sign out

‘Welcome Dave Dunford , your role is Student

Project Title: SUMS DOM
Unit: PIE30
Description: Progress Report
Opening date: 2007-10-01
Deadine: 2007-10-05
Fie Attachment: core j2ee patterns overview.doc left twice _Browse._ | _Upload |
Project Tite: SUMS DOM
Unit: PIE30
Description: Chapter Plan
Opening date: 2007-11-13
Deadine: 2007-12-15
Uop sub system footer

UoP SUMS footer

Figure 22 SUMS-Submission Student’s Project Status View example

As before, a Student’s Project Status View is constructed from a typical SUMS User Interface View. Figure 23 is a snippet of a “scriptless JSP” illustrating the methodology used to display the student’s information.

A student is allowed three attempts to upload an artefact and Figure 22 shows that the student has one attempt left to upload a file. Figure 25 illustrates the JavaServer Page technologies to control this.
The JavaServer Page snippet below illustrates the display of information linked to projects undertaken by a student. For example: name of a unit associated with a project is obtained by the View as it navigates its way through the SUMS database. The Logon Controller prepares the path for this navigation by obtaining a list of final projects being undertaken by the student, refer to Figure 21.

[image: image22.emf] <table border="0">

 <c:forEach var="fp" items="${finalprojects}">

 <c:forEach var="fp_mstone" items="${fp.studentMilestonesCollection}">

 <tr>

 <td width="100">Project Title:</td>

 <td> ${fp.projectTitle}</td>

 </tr>

 <tr>

 <td width="100">Unit:</td>

 <td> ${fp.unitId.unitName}</td>

 </tr>

 <tr>

 <td> Description:</td>

 <td> ${fp_mstone.milestoneId.description}</td>

 </tr>

 </c:forEach>

 </c:forEach>

 </table>

JSP snippet exploring use of JSP EL.vsd

Session attribute “finalprojects” is an ArrayList of the

ADT FinalProject (an entity class), and its entries are

processed through the local variable “fp”

A generics Collection with Information on Student

Milestones associated with a Final Project

(addressed by “fp”) is obtained by an accessor of

the FinalProject entity and allocated to local

variable “fp_mstone”

Displays the unit name related to a

final project and is accessed

through the accessors of the

entities FinalProject and Unit

Displays the milestone description of a

student milestone from the genrics

collection addressed above and is

accessed through the accessors of the

entities StudentMilestones and

Milestones

Figure 23 JavaServer Page snippet illustrating data display and navigation of SUMS database.
[image: image23.png]-9 -

) [htosfocabostiaos#/07Ss 5.5 valLogonsubmit.do =

Google: w\‘ -8 x

UoP SUMS system
UoP SUMS-Submission Sign out

‘Welcome Dave Dunford , your role is Student

Project Title: SUMS DOM
Uiic PIE30
Description: Progress Report
Opeing date: 2007-10-01
Deadine: 2007-10-05
File Attachment DD Chapter Plan doc left once Upload
Project Tifle: SUMS DOM
Unit: PIE30 Lookin: [SUMS 5l 0@ e m-
Description: Chapter Plan
! N B H]oo s repert draprr 540
Opeing date: 2007-11-13 e E
Deadine: 2007-12-15
Uop sub system footer

UoP SUMS footer

Figure 24 Artefact selections for Upload by a student using the Browse function
Functionality is enabled for the student to select a file for upload by browsing and Figure 25 illustrates the JSP scripting that monitors the progress of file uploads.

[image: image24.emf]<c:if test="${(fp_mstone.milestoneId.attachmentTypeId.allowedSize > 0)}" >

 <td> File Attachment:</td>

 <td> ${fp_mstone.fileAttachmentId.fileName}</td>

 <c:choose>

 <c:when test="${(fp_mstone.fileAttachmentId.timesLeft == 1)}">

 <td> left once</td>

 </c:when>

 <c:when test="${(fp_mstone.fileAttachmentId.timesLeft == 2)}">

 <td> left twice</td>

 </c:when>

 <c:when test="${(fp_mstone.fileAttachmentId.timesLeft == 3)}">

 <td> left three times</td>

 </c:when>

 </c:choose>

 <c:if test="${(fp_mstone.fileAttachmentId.timesLeft < 3)}" >

 <td>

 <html:form method="post" action="/studentUpload" enctype="multipart/form-data">

 <html:hidden property="studmstnid" value="${fp_mstone.studmstnid}" />

 <html:file property="file"/>

 <html:submit>

 <bean:message key="Student.upload"/>

 </html:submit>

 </html:form>

 </td>

 </c:if>

Enable files to be uploaded

when allowedsize of artefact

> 0

Identify number of times left

Enable File Upload three times only

Enable selection of file to be uploaded

Upload button passes control

Controller studentUpload

Links uploaded artefact to

a Student Milestone

student upload jsp explained.vsd

Figure 25 JavaServer Page snippet monitoring Student File Uploads
Selection of an Artefact for Upload by Student’s Project Status View (Figure 22) will see control being transferred to a new thread of the StudentUpload Controller. Figure 26 highlights the logic required to manage the uploading process of the artefact and its persistence to the database.

The StudentUpload Controller illustrates several points of interest associated with database updates. Database Input/Output processing and transaction management is abstracted away from the Controller by the Business Services interfaces. But the developer must identify when a unit of work is complete and this event occurs upon closure of an atomic set of business processes. Each event provides demarcation of the database transaction and identifies a point when updates must be applied to the database. The PersistenceManagerDAO is provided to manage the commit process of the database updates. Should a database update fail and a rollback is necessary, it is the developer’s responsibility to manage the implications of such an event and inform the user when necessary.

A successful update to the database identifies a synchronisation point and processing, such as sending of confirmation e-mails, can be executed.

[image: image25.emf]/* StudentUploadAction.java */

package DD.SUMS.OPSS.front;

imports

 public class StudentUploadAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 HttpSession session = request.getSession();

 Person person = (Person)session.getAttribute("person");

 StudentControl studentCtl = (StudentControl)session.getAttribute("studentCtl");

 StudentUploadForm cf = (StudentUploadForm) form;

 FormFile file = cf.getFile();

 String studmstnid = cf.getStudmstnid();

 UploadFile uploadFile = new UploadFile(file, studmstnid, person);

 if (exceptionMsg == null)

 {

 uploadFile.PerformUpload();

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.commitTransaction();

 try {

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.checkCommitStatus();

 } catch (ExceptionCommitHasFailed ex) {

 try {

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.rollbackTransaction();

 } catch (ExceptionRollbackFailed e2) {

 exceptionMsg = "Sorry, updates failed and so did the Rollback";

 nextPage = mapping.findForward("logoff");

 }

 finally

 {

 exceptionMsg = "Sorry, updates failed";

 nextPage = mapping.findForward("logoff");

 }

 }

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.clearEntityManager();

 DD.SUMS.RDBMS.DAO.PersistenceManagerDAO.closeEntityManager();

 request.setAttribute("finalproject", uploadFile.getFinalProject());

 }

 if (exceptionMsg != null) {

 request.setAttribute("ExceptionMessage", exceptionMsg);

 return nextPage;

 }

}

Establish addressability to

the HTTP Session

Establish addressability to

the details of the Person

logged in

Establish addressability to

the Struts ActionForm

Establish addressability to ‘Control’

module that provides access to the

Business Services interface for the

Student Role

Get Information from the

input form

Logic that manages all I/O processes to the

database through the Business Services layer,

transaction demarcation for this unit of work is

provided by this layer

This logic ensures the ACID

properties of the database

transaction within this HTTP

request-response cycle is

maintained by providing

rollback for this unit of work

Set Attributes for provision of

dynamic content to the following JSP

Set the attribute to display any

exception messages for the

user to consider

a typical controller explained.vsd

Figure 26 A Controller illustrating the SUMS database update process
5.4.3 SUMS-Submission Student Receipt after upload
Successful uploading of an artefact is registered to the student by issuing a receipt.

[image: image26.png]G- - @) [E rwiocshostanssiopss_s.5 vafsudentupiosd.do

Google

]- = x

UoP SUMS system

UoP SUMS-Submission Sign out

‘Welcome Dave Dunford , your role is Student

Your file has been uploaded successful

Project tile: SUMS DOM
Student name: Dunford

Assessment name: Progress Report

File name: DD Chapter Plan.doc
Uploading time:

File size: 50176

Message digest key for fle

92fdd46cc4abeOf2600c33b5HeSd
content:

Top sub system footer

UoP SUMS footer

Figure 27. SUMS-Submission – Student Receipt of an Artefact
Artefacts are registered to milestone linked to a student’s project and the system manages the number of uploads. Figure 28 illustrates a student has used their three attempts to upload an artefact and the ability to perform further uploads has been removed. Figure 25 illustrates the implementation of this control.

[image: image27.png]@ - & - @ 0 G [FE nto:/focahost:a0s4/0pss 5.5 valLogonSubmit dojisessionid=BD 1396D6C 34338A420EB206BE 1276554

Google

). = x

¢ News, Sport, Music, Movies, Maney, .. | | [] UoP SUMS Submission Student in... .3 |

UoP SUMS system
UoP SUMS-Submission Sign out

‘Welcome Dave Dunford , your role is Student

Project Title: SUMS DOM
Unic PIE30
Description: Progress Report
Opening date: 2007-10-01
Deadine: 2007-10-05
Fie Attachment: DD Chapter Plan.doc left three times
Project Title: SUMS DOM
Unic PIE30
Description: Chapter Plan
Opening date: 2007-11-13
Deadine: 2007-12-15
Top sub system footer

UoP SUMS footer

Figure 28. SUMS-Submission - student has reached the limit of 3 uploads
5.5 Summary
This section confirmed the analysis and design of the SUMS architecture created from user and technical requirements specified by the client. The version of SUMS-Submission developed by the author utilises the design and technologies discussed in sections 3 and 4. It illustrates how the technologies successfully combine to support the SUMS architectural design and enables future Change.
6. Testing & Evaluation

6.1 Introduction

Deployment of high quality software during the lifecycle of a computer system is essential to the success of an organisation. Pressman (2000, pp. 426-460) identifies testing is critical in the provision of quality software. Its aim is to assure interested parties and stakeholders that the hardware and software implemented to support a computer system meets their requirements. Validation and verification of a computer system requires a systematic and innovative approach which varies according to its intended use (eg: real-time, life-support, business), the lifecycle phase and interests of individuals within an organisation.

Objective of software testing is to uncover errors (or unwanted features) and Pressman (2000, pp. 465-490) offers a strategic approach to enable this process. In the author’s experience, testing of business computer systems tend to iterate through a process using the following approach:

1. “Unit testing” verifies individual components by validation of its external interfaces with their internal operations and is often referred to as ‘white-box’ testing

2. “Integration testing” focuses on the component interactions to ensure correct flow and processing of data between components. Test plans should include a Critical path analysis to identify a testing sequence

3. “Validation” uses ‘black-box’ techniques to validate and ‘clarify’ the system against customer requirements, ‘Change’ is often introduced at this point to include refinements and clarification to requirements

4. “System Testing” widens the scope to validate the system against the needs of all interested parties and stakeholders. For example: involves testing for business demands, costs, security, disaster recovery, performance, scalability, legal and statutory compliance. ‘Change’ is often introduced at this point as requirements are extended and modified.

5. “pre-live” checks ensuring operability and data consistency with existing and legacy systems.

After “go-live”; Change, maintenance and enhancement normally follows the above approach.

6.2 SUMS Application Architectural Design Evaluation

Evaluation of the SUMS application architecture has been limited to a SUMS-Submission developed by the author. Testing progressed through the Netbeans IDE run-time environment (RTE) employing a bundled web container Tomcat.

The author found the debugging tools of the Netbeans IDE helpful but preferred to manage evaluation of the application with a combination of displaying internal information through the Views and analyzing web container logs. ‘Commons-logging’ of the Apache Software Foundation (2008) can be used to augment the web container logs with internal application data and process flows.

6.3 Functionality Testing

Development and testing proceeded using an iterative approach in a progressive series of increments; refer to sections 3.2 and 3.3.

Elaboration of the student role testing is included in this report; it shows User Interface ‘black-box’ testing can be used to evaluate the processing and performance of the SUMS Domain Object Model components. Accurate and efficient data processing by interfaces of the Business Services components are essential to the success of the SUMS Architecture and were analysed using information from the web container logs.
Refer to Appendix 5 for overview of interfaces Business Services components.

Summary analysis of the testing performed for the roles Cohort Coordinator and Marker have been included.
6.3.1 Memory use and data flow analysis
During a conversation, a web user interface will establish links between its processes by allocation of memory addressable through its Controllers and Views. This memory is referenced by a name and its life or scope is specified at time of creation, For example: Session attributes are pieces of memory allocated to a session-id of a user’s conversation and are used to pass data between the servlet processes associated with that conversation. Evaluation of these data flows are an essential element to the testing strategy of the SUMS architecture.
6.3.2 Test Results of Logon / Logoff
	Test Case
	Input
	Output
	Comments

	Reject Logon of unrecognised user
	A User not declared in database table Person
	Message to logon View – ‘user’ does not exist
	OK – ExceptionUserNotExist raised by interface loginUser()

	Reject Logon of a recognized user using incorrect password
	A valid user with incorrect password
	Message to logon View – ‘user’ provided invalid password
	OK – ExceptionInvalidPassword raised by interface loginUser()

	Reject Logon of a user where username is duplicated by another user
	Enter a duplicated username with a valid password
	Message to logon View – user is not unique
	OK –

ExceptionUserNotUnique raised by interface findByUserName() of component PersonDAO of

“Resources Layer”

	Logon of valid user with correct password
	
	
	OK – authenticates user to a role and passes control correctly to the first View.
Entity “Person”, role and user allocated to session attributes to manage authentication during User Interface conversation processing of Controllers and Views.

Control instance (by role) allocated to session attribute to provide access to “Business Services” according to role User Interface conversation processing of Controllers and Views.

	Logon of valid user with correct password and Logon Controller temporarily modified to remove session attributes
	
	
	OK – missing session of Person entity raised web page injection and reported by View as control was passed to View securityIssue.jsp

	Logoff
	
	
	OK – session attributes deleted to block web page injection and stop authentication processing

Logon / Logoff ‘black-box’ validates components:

	Layer / Component
	Interface
	Comments

	Business Services / UserControl
	loginUser()
	OK

	View /

SecurityCheck.jspf
	
	OK – passed – included in all Views of User Interface

Management of database processing where only reads were performed was managed correctly in a single unit of work.
6.3.3 Student

6.3.3.1 Successful Logon by Student
The Logon process generates session attributes:

· “person” containing Person entity

· “role” of student

· “studentCtl” instance of “Business Services” component StudentControl

· "finalprojects" list of student’s projects

· "fp_mstone" list of student’s project milestones

	Test Case
	Input
	Output
	Comments

	Successful logon of a Student
	
	View “Student.jsp” retrieves project and associated milestones from session attributes created by logon Controller. View displays other project information by using entity accessors to navigate database, eg: Unit Name.
	OK

	File selection for upload
	‘Browse’ push-button
	Microsoft® Windows® popup enables file selection
	OK – enabled when milestone will accept an upload, ie: allowed size > 0 and timesleft < 3

	Selected File requested for Upload
	‘Upload’ push-button
	Control passed to new thread of Controller StudentUpload
	OK – enabled when milestone will accept an upload, ie: allowed size > 0 and timesleft < 3

Successful logon of a Student ‘Black-box’ test validates the following:

	Layer / Component
	Interface
	Comments

	Business Services / StudentControl
	login()
	OK

	Resources Layer / StudentDAO
	findByPersonId ()
	OK

Returns list of Student entities which can be empty

	Business Services / StudentControl
	findFinalProjectByStudent ()
	OK

Returns list of FinalProject entities which can be empty

	Resources Layer / FinalProjectDAO
	findFinalProjectByStudent ()
	OK

Returns list of FinalProject entities which can be empty

	Business Services / StudentControl
	findStudentMilestonesByStudent
	OK

Returns list of StudentMilestones entities which can be empty

	Resources Layer / StudentMilestonesDAO
	findStudentMilestonesByStudent
	OK

Returns list of StudentMilestones entities which can be empty

	Model Entity /

FinalProject
	getProjectTitle()

getUnitId()
	OK – obtained from list of session attribute

	Model Entity /

Unit
	getUnitName()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

StudentMilestones
	getStudmstnid()
getMilestoneId ()

getFileAttachmentId()
	OK– obtained from list of session attribute

	Model Entity /

Milestones
	getDescription ()
getStartDate ()

getEndDate ()

getAttachmentTypeId()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

AttachmentType
	getAllowedSize ()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

FileAttachment
	getFileName ()
getTimesLeft ()
	OK – accessor navigation obtains data from database using Hibernate

6.3.3.2 Management Upload of artefact by Student

Managed by Controller StudentUpload

	Test Case
	Input
	Output
	Comments

	Successful Upload
	
	Control is passed to View StudentReceipt.jsp
	OK – artefact is attached as a byte stream to the correct milestone associated with the selected project within an allocated unit of work.

Database failure not tested!

	Un-Successful Upload
	
	
	Not tested !

Successful upload of an artefact by a Student ‘Black-box’ test validates the following:

	Layer / Component
	Interface
	Comments

	Business Services / UploadFile
	Constructor
	OK – correctly identifies milestone of a project that has been selected to receive the artefact and obtains file details

	Business Services / UploadFile
	prepareForUpload()
	OK – Obtains file as an input stream, calculates security MD5 keys.

Not tested: raising exceptions for file I/O problems

	Business Services / UploadFile
	performUpload ()
	OK – correctly updates database with uploaded file and links it correctly to milestone of project

	Resources Layer / PersistenceManagerDAO
	commitTransaction()
checkCommitStatus()
clearEntityManager()
closeEntityManager()
	OK – commit failure and rollback not tested !

	Model Entity /

Person
	getFirstName ()

getSurname()
	OK – obtained from session attribute “person”

	Model Entity /

Unit
	getUnitName()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

FinalProject
	getProjectTitle()
	OK – obtained from session attribute “finalproject”

	Model Entity /

StudentMilestones
	getMilestoneId ()

getFileAttachmentId()
	OK – obtained from session attribute

	Model Entity /

Milestones
	getAttachmentTypeId()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

AttachmentType
	getDescription()
	OK – accessor navigation obtains data from database using Hibernate

	Model Entity /

FileAttachment
	Constructor()

setTimesLeft()

setAttachmentTypeId()

setContentType()

setFileAttached()

setFileName()

setFileSize()
	OK

	Resources Layer / FileAttachmentDAO
	findfileAttachmentById()
	OK

	Model Entity /

StudentMilestones
	setFileAttachmentId()
	OK

	Resources Layer / StudentMilestonesDAO
	findStudentMilestonesById
UpdateStudentMilestone()
	OK

6.3.3.3 Report Successful Upload of artefact by Student

Managed by View StudentReceipt.jsp which displays MD5 security keys of file (artefact) uploaded and shows correct allocation to project milestone
6.3.4 Cohort Coordinator

Business processing is managed with a simple user interface across 3 views and 3 controllers.

	Test Case
	Input
	Output
	Comments

	Successful logon of a Cohort Coordinator
	
	View1 identifies user and role with a drop down selection of all cohorts
	OK – drop down content is complete

	View1 -Coordinator selects a cohort not under their management
	Uses drop-down widget to display cohorts and makes selection
	Exception message to View1 informing of no access to cohort
	OK

	View1 -Coordinator selects a cohort under their management
	Uses drop-down widget to display cohorts and makes selection
	View2 displays information of units assigned to the selected cohort
	OK - View2 does not display selected cohort.

Requires Change

	View2 – add a unit milestone to the selected cohort
	‘New’ push-button
	View3 provides data entry for new unit milestone information with push-button ‘New’ enabled
	OK – View3 does not display selected cohort.

Requires Change

	View2 – change a unit milestone information to the selected cohort
	Select unit milestone by radio-button and ‘Edit’ push-button
	View3 provides data entry for change of unit milestone information with push-button ‘Update’ enabled
	OK – View3 does not display selected cohort, incorrectly allows unit of milestone to be changed.

Requires Change

	View2 – delete a unit milestone from the selected cohort
	Select unit milestone to delete by radio-button and ‘Delete’ push-button
	View2 is displayed and deleted unit milestone has been removed from the output.
	OK – all associated milestones are removed from the database.

View2 does not display selected cohort. User requires intermediate ‘confirm deletion’ process.

Requires Change.

	View2 – no unit selected for Edit or Delete
	Radio-button selection ignored by user
	Exception message to View2 informing of milestone selection required
	OK

	View3 – data entry screen for milestone edit or create
	Push-button ‘New’ to create or ‘Update’ to edit
	
	OK – database is updated correctly according to push-button selection.

Client and server field validation is required. View3 does not display selected cohort.

Requires Change.

6.3.5 Marker

Test results table
	Test Case
	Input
	Output
	Comments

	Successful logon of a Marker
	
	View1 provides the marker with their list of student’s projects. Each project has one more assesments that may be available for download
	OK – correct output

	Download a student’s assessment
	Select assessment for ‘download’ using its push-button
	Enters Windows® GUI processing of file download
	OK – downloaded file is correct

6.4 Evaluation

Netbeans run-time environment (RTE) provides evaluation of a web application through a single session of a browser. But, Web applications asynchronously process a number of users who can have a number of sessions open. Therefore, evaluation with the Netbeans RTE is only sufficient to “unit test” a SUMS User Interface and its components.

Development employed a simple interface but all roles require further work to include ‘control’ with a menu system and ‘hints’ through breadcrumb trail.

Date fields are displayed and entered in a system format and options should be added to enable a user’s preference.
6.4.1 Logon / Logoff

Logon process enables the web application to authorise access to a user and allocation of the user’s details to a session attribute “person”. The attribute “person” enables the Controllers and Views of the SUMS application to:

· Allocate the user a role

· Manage business processes according to their role and identity

· Restrict data access and presentation according to their role and identity

· Control authentication and their access to resources for each browser session open

· Provide a measure of security

Logoff processes require further evaluation to ensure there is no ‘memory leakage’
6.4.2 Cohort Coordinator

Business processing is managed with a simple user interface across 3 views and 3 controllers. Development progressed assuming a normal sequence of events and further work is required to ensure the interface works when a user strays, eg: menu processing.

Entry of dates could be enabled by provision of a control managed by javascript, for example: Dynarch.com (2008) open source “The DHTML / Javascript Calendar ” control could be implemented but it must be evaluated to meet our needs.

Development was performed as the author’s knowledge and experience of ORM design and implementation with Hibernate and JPA was expanding – Rework is required to utilize the “lazy loading” features of Hibernate.

6.4.3 Student

Works well. Further work is required to implement sending of e-mails once a database transaction has successfully uploaded a student’s artefact to the database.
6.4.4 Marker

Works well. Further work required to automatically load a supporting application according to the suffix of the downloaded file, eg: present artefact in Microsoft® Word application for a ‘.doc’.
6.5 Summary

The simple User Interface enabled the evaluation of the SUMS architecture by allowing effort to be concentrated on the unit and integration testing of SUMS Domain Object Model. Verification of the Business Services interfaces was augmented by analysis of their data and process flows. Information on these flows was provided through logging operations of the application.

Logging of processes and data flows in a web application is an essential tool. It provides input into monitoring systems which can be devised to provide a variety of information. For example: security breaches, unauthorised use, data request and volumes, critical path analysis, bottlenecks, performance…
Netbeans run-time environment (RTE) is sufficient to “unit test” a SUMS User Interface. Further evaluation of the SUMS architecture requires deployment of the SUMS application and its components to a server. This should be designed to enable the full evaluation of the SUMS web application.

7. Conclusion
The project undertook to implement the client’s vision of separating the business functionality of the SUMS web application from the database and its management. This separation has been encouraged through use of the MVC-2 pattern. Business functionality is implemented through Views and Controllers of a User Interface which call upon services of the Model to provide access to the database.

7.1 Project Planning

The SUMS application is web-based and its architecture is constructed with Java™ technologies and these have introduced an Object-Oriented nature to its implementation. Reuse is a fundamental principle to Object-Oriented Analysis and Design and underlies the Component Based Software Engineering (CBSE) techniques to the SUMS architecture construction. Regular meetings with the client and CBSE encouraged an iterative approach. This enabled the author to expand the details of the SUMS architecture with an iterative nature within the main phases of development during the projects’ lifecycle (Figure 8).
7.2 Designing and Implementing SUMS Architecture
The architecture provides a framework which extends the MVC-2 pattern. At its highest level it can be viewed simply as:

[image: image28.emf]View Controller

Model

User Interface(s)

Domain Object Model

a simple SUMS model.vsd

Figure 29. SUMS Architecture and MVC-2.

Each SUMS sub-system depicted in Figure 1 encapsulates its business processes within a User Interface. The framework enables their development to proceed in parallel enabling rapid deployment of the application using a team of developers. The author implemented a simple User Interface of the SUMS-Submission component to enable focus on the architectural design of the SUMS application. Its design is such that work being undertaken on the User Interface in parallel by Kate Stainton-Ellis can be included into the framework. The architectural design embraces Change and embodies the principles of Component Based Software Engineering (CBSE) discussed in section 2.1.
SUMS application comprises a number of User Interface(s) which form highly cohesive components which are loosely coupled within a framework ‘glued together’ with a model processing of a single database. The architectural design uses CBSE principles to integrate open source frameworks (eg: Struts, Hibernate) and third party vendor tools into a framework of re-usable components. Component design has incorporated a Don’t Repeat Yourself (DRY) principle and anticipates Change through being ‘Closed to Modification but Open to Extension’.
The single central Model (database) is its strength as it provides a consistent single point of data source to the business processes, but it provides an Achilles heel. Centralisation of the Model’s data processing controls performance and scalability of the SUMS application. It has introduced synchronous processing concepts to the access of the database.
Figure 30 below extends Figure 29 and illustrates the SUMS architecture as a generic model which could be applied to computer systems with online asynchronous transactional processing, such as web-based applications.
Its simplicity in design has been accomplished by use of:

· MVC-2 pattern

· Open source presentation framework, such as Struts

· Business Services separate the presentation tier from the underlying Model
· Open source persistence framework, such as Hibernate with JPA

· Data Access layer interprets input/output requirements of the Business Services to the persistence layer

· Persistence layer interprets input/output requirements of the Data Access layer to the RDBMS
· RDBMS interprets input/output requirements of the Persistence layer to the database

· Database transactions do not span across request-response cycles within a conversation

This structure enables an organisation to choose from a variety of frameworks to include in its implementation. For example: The persistence framework could utilise Hibernate, JDO, Toplink, JPA, or EJB and the underlying RDBMS (depending on persistence framework) could employ Oracle™, MySQL™ or Microsoft® Access.

[image: image29.emf]Model (Entity)

Services

D A O

Relational Database

Management System

Persistence Framework

SUMS Database

tables

Visible Business Layer

Data Access Layer

Logical Input/Output Processing

Overview of a SUMS Architectural

Framework

Resource Layer

DD Overview of SUMS architectural framework v5.vsd

version 0

View Controller

User Interface

Delegates

Domain Object

Model

Presentation

Physical Input/Output Processing

Figure 30. SUMS Architecture – generic model.
The bottleneck introduced by the central Model is reduced by decoupling the request for I/O processes (provided by Services) and returning information through a separate entity. This is a particularly useful feature introduced through Hibernate
The SUMS application will initially be implemented with J2SE technologies. A J2SE web application is executed within the environs of a single server. But the architectural design ensures the User Interface, Domain Object Model and its components encapsulate their processing behind one or more interfaces. This enables the SUMS application to be distributed across a series of networked servers giving performance and scalability which is now dependant on the server platforms and the network design.

A SUMS application in a networked environment will require Change to its implementation but not its architectural design. The Change will need to implement J2EE technologies. A study will be required to identify the points of separation across the network of servers. This study will identify component interfaces that require a façade to provide a networking capability by introducing serializable data flows and addressing (remote or local) across the network.

Migration of the SUMS application to utilize J2EE is enabled by incorporating the open source persistence framework Hibernate and managing database transaction processing through by the Java Persistence API (JPA) EntityTransaction interface. This interface is compatible with the Java Transaction API (JTA) which would be implemented by the conversion of the database transaction processing to be provided by an Application Server such as JBoss or GlassFish. Application Servers use the 2 phase commit protocol which is essential to manage the integrity of a database where asynchronous processing will occur across the network.

SUMS is a web application where parts of its data flow and processing is exposed across a public network. Security is a constant issue and the introduction of the Person entity as a web attribute linked to the browser session provides some comfort against web page injection.

SUMS architecture has been unit tested in an environment restricted to a single browser session managed through an IDE. Deployment of the application to a server will enable the architecture to be tested for business process integrity in an operational environment by interrogation of the processes linked with integration, information flows, process flows, data integrity and ACIDic database transactional processing. This stress testing will enable proof of the SUMS architectural design to all interested parties and stakeholders within the University of Portsmouth prior to its implementation into a ‘live’ environment.
During the stress testing further opportunities will arise enabling the performance of the SUMS Domain Object Model by analysis of its database management. There are several factors whose performance integrates to provide an efficient and scalable process to manage the database:

· Relational design structure – is it efficient and conformant according to its use in the business processes
· Use of data Input/Output(I/O) from database

· Object Relational Mapping – analysis of business processes will extend the User Interface ability to navigate the database and distribute the I/O processing of the database across the request-response cycle
· Bauer and King (2007, p.415) advise reduction in memory consumption by disabling Hibernate’s “dirty checking” for read only entities

· Bauer and King (2007, pp. 559-612) advise strategies should be developed to optimize fetching and caching of data with reference to business processing, ORM configuration and Hibernate (with JPA) configuration

· Optimise native CRUD SQL generation through analysis of data structures with configuration of Hibernate and JPA
· Optimise performance of RDBMS through analysis of data and flow processes associated with the database management and configuration

Further work is required to clarify client’s requirements for control of access to data within the SUMS database. The author has considered the development of a data filter which enables read-write access to database table fields according to the user’s role within a User Interface. Use of XML configuration files would enable configuration of data filtering to be independent of the SUMS web application. Bauer and King (2007, pp. 540-557) identify data filtering and logging processes can be implemented by Interceptors that listen to Hibernate’s database events and execute appropriate processing, for example:

· Deny access to certain data, eg: disallow students access to the table MARKS

· Enable logging of all data updates to be stored in the table AUDIT_TRAIL

· Enable logging of data access according to its sensitivity

Combination of logging using Hibernate interceptors, Apache ‘commons-logging’, web container logs and server logs will enable development of procedures to analyse the use of the SUMS web application and identify ‘threats’ to its security and integrity.

7.3 Learning Achievements

This project has enabled the author to appreciate strategies that are available to a developer designing and constructing web applications using Java™ technologies. By embracing Change and including it within the architectural design it has illustrated how the need for innovation can be supported during an application’s lifecycle. By employing Component Based Software Engineering disciplines; the author has gained an invaluable insight into Object-Oriented Analysis and Design principles in the project management, development and deployment of an enterprise system.
7.4 Summary

Initially the aim of the project was to develop a framework for the sub-systems of the SUMS application to utilise a single database providing data consistency and integrity. This was established by implementing a ‘Services’ interface between the Model (SUMS database) and business functionality provided by the sub-systems User Interface. The ‘Services’ interface provides a clear break between the User Interface(s) and their supporting Model.
An initial requirement of the SUMS application is its deployment to a single server. This limited the author to consider the architectural design of the SUMS application to using Java™ technologies of the J2SE variety. Web applications implemented with J2SE have their performance and scalability limited to the server where it sits. The author expanded project scope to consider the implementation of SUMS as an enterprise application within a networked environment. These considerations enable improvements to performance and scalability of SUMS as it is migrated to using Java™ technologies of the J2EE variety.
8. References

Apache Software Foundation (2008). Commons Logging, Retrieved March 29th 2008 from Apache Commons website: http://commons.apache.org/logging/
Basham C, Sierra K and Bates B. (2004), Head First Servlets & JSP™. 1st Edition, O’Reilly Media, Sebastopol, USA

Bauer C and King G. (2007), Java Persistence with Hibernate. Revised Edition of Hibernate in Action, Manning, Greenwich, USA

Conallen J. (2000), Building Web Applications with UML. Addison-Wesley of Pearson Education, Upper Saddle River, Canada and USA

Crawford W and Kaplan J. (2003), J2EE™ Design Patterns. 1st Edition, O’Reilly, Sebastopol, USA

D’Souza DF and Wills AC. (1998), Objects, Components, and Frameworks with UML: The Catalysis Approach. 2nd Printing, Addison Wesley Longman, Massachusetts, USA

Dynarch.com (2008), The DHTML / Javascript Calendar. Retrieved 31st March 2008 from Dynarch.com website: http://www.dynarch.com/projects/calendar/
Eeles, Houston and Kozaczynski (2002). J2EE: An Introduction to the Rational Unified Process. Retrieved 11th March 2008 from Pearson Education informIT website: http://www.informit.com/articles/article.aspx?p=30317
Fowler, M. (2004), UML Distilled: A Brief Guide to the Standard Object Modelling Language. 3rd Edition, Addison-Wesley of Pearson Education Inc., Boston, USA

Freeman E and Freeman E. (2004) Head First Design Patterns, First Edition. O’Reilly, California, USA
Google. (2008). Web Search Help Center. Retrieved 14th March 2008 from Google website: http://www.google.co.uk/support/?ctx=web
Husted T. (2003) Struts in Action. Fourth Printing, Manning, California, USA
IBM (2008). IBM Rational Software Delivery Platform. Retrieved 11th March 2008 from IBM Rational software website: http://www-306.ibm.com/software/info/developer/index.jsp
Internet Society (1999). Hypertext Transfer Protocol – HTTP/1.1. Retrieved 24th March 2008 from IETF website: http://tools.ietf.org/html/rfc2616
Fountas, N. (2007). An Online Project Monitor System for the University of Portsmouth. MSc Project Report, School of Computing, University of Portsmouth.

Java Community Process. (2007) JSR 220: Enterprise JavaBeans™ 3.0. Retrieved February 28, 2008. Java Community web-site: http://jcp.org/en/jsr/detail?id=220
JBoss. (2007) Java Persistence with Hibernate. Retrieved February 28, 2008. from Hibernate web-site: http://jcp.org/en/jsr/detail?id=220
Keith M and Schincariol M. (2006) Pro EJB 3: Java Persistence API, Apress, Berkeley, California, USA
Kodali RR and Wetherbee J. (2006) Beginning EJB™ 3 Application Development: From Novice to Professional, Apress, Berkeley, California, USA
Minter D and Linwood J. (2006) Beginning Hibernate: From Novice to Professional, Apress, Berkeley, California, USA
MySQL AB (2005). MySQL AB Trademark Policy. Retrieved 26th March 2008 from Sun Microsystems MySQL AB website: http://www.mysql.com/about/legal/trademark.html
MySQL AB (2008). MySQL GUI Tools Downloads. Retrieved 26th March 2008 from Sun Microsystems MySQL AB website: http://dev.mysql.com/downloads/gui-tools/5.0.html
Nielsen, J. (2008). Usable Information Technology. Retrieved 14th March 2008 from Jakob Nielsen’s website: http://www.useit.com/
Phuong, B. (2007). An Online Project Submission System for the University of Portsmouth. MSc Project Report, School of Computing, University of Portsmouth.

Powell, S. (2005). An Online Project Marking System for the University of Portsmouth. MSc Project Report, School of Computing, University of Portsmouth.

Pressman, R. (2000), Software Engineering: A Practioner’s Approach. European Adaption Fifth Edition, McGraw-Hill, Maidenhead, UK

Red Hat Inc. (2006a). Hibernate - Relational Persistence for Java and .NET. Retrieved January 10, 2008 Hibernate web-site: http://www.hibernate.org/
Red Hat Inc. (2006b). Hibernate - LicenseFAQ. Retrieved January 10, 2008 Hibernate web-site: http://hibernate.org/356.html
Ruiz, J. (2006). An Online Project Allocation System for the University of Portsmouth. MSc Project Report, School of Computing, University of Portsmouth.
Satzinger J, Jackson R and Burd S. (2005), Object-Oriented Analysis and Design with the Unified Process. Thomson Course Technology™, Massachusetts, USA
Sun Microsystems (2006). JDK™ 6 Documentation. Retrieved 26th March 2008 from Sun Microsystems Java Software website: http://java.sun.com/javase/6/docs/index.html
Sun Microsystems (2008a). Web-Tier Application Framework Design. Retrieved 24th March 2008 from Sun Microsystems blueprints website: http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/web-tier/web-tier5.html
Sun Microsystems (2008b). JavaServer Pages Technology. Retrieved 24th March 2008 from Sun Microsystems website: http://java.sun.com/products/jsp/
Sun Microsystems (2008c). JavaServer Pages Standard Tag Library. Retrieved 24th March 2008 from Sun Microsystems website: http://java.sun.com/products/jsp/jstl
Sun Microsystems (2008d). NetBeans IDE 6.1 Beta Information. Retrieved 26th March 2008 from Sun Microsystems NetBeans website: http://www.netbeans.org/community/releases/61/
Sun Microsystems Inc. (2008e). Java Persistence API FAQ. Retrieved January 10, 2008 Sun Developer Network web-site: http://java.sun.com/javaee/overview/faq/persistence.jsp
World Wide Web Consortium. (2008a). W3C® Markup Validation Service. Retrieved 14th March 2008 from W3C® website: http://validator.w3.org/
World Wide Web Consortium. (2008b). W3C® CSS Validation Service. Retrieved 14th March 2008 from W3C® website: http://jigsaw.w3.org/css-validator/
World Wide Web Consortium. (2008c). W3C® Link Checker. Retrieved 14th March 2008 from W3C® website: http://validator.w3.org/checklink
World Wide Web Consortium. (2008d). W3C® Web Accessibility Initiative. Retrieved 14th March 2008 from W3C® website: http://www.w3.org/WAI/
Yeung, I (2006). Student and Unit Management System (SUMS) – Registration Module.

BSc Project Report, School of Computing, University of Portsmouth.
9. Bibliography

Published texts used by the author during the project but not directly cited within this report
Alur D, Crupi J and Malks D. (2003) Core J2EE™ Patterns: Best Practices and Design Strategies, 2nd Edition, Sun Microsystems Press – Prentice Hall, Upper Saddle River, USA
Deitel HM and Deitel PJ. (2005) Java™ How to Program, 6th Edition, Pearson Education – Prentice Hall, Upper Saddle River, USA
Hall M and Brown L. (2004) Core Servlets and JavaServer Pages, Volume 1: Core Technologies, 2nd Edition, Sun Microsystems Press – Prentice Hall, Upper Saddle River, USA
Hall M, Brown L and Chaikin Y. (2007) Core Servlets and JavaServer Pages, Volume 2: Advanced Technologies, 2nd Edition, Pearson Education – Prentice Hall, Boston, USA
McLaughlin BD, Pollice G and West D. (2007) Head First Object-Oriented Analysis and Design, First Edition, O’Reilly, Sebastopol, California, USA
Appendix 1 Requirements

Document sent to client during early December 2007 for approval.
SUMS components have been delivered as individual artefacts associated with the final assessment of a student’s degree course. In all cases Dr. Jim Briggs has acted as a client providing the system requirements and support for development of the SUMS components. Development has been progressed with the following assumptions (constraints) for each component:

· Utilise J2EE technologies

· Standalone acting as a separate web application with its own home page and login process

· Operate on a single server using the web server Apache and servlet container Tomcat utilising a single JVM and Class loader

· Required own authorisation and authentication process

· Utilise and extend database schema of earlier designs

· Oracle would provide the RDBMS in a ‘live’ environment

· Utilise MVC-2 architecture delivered via Struts 1.2 with J2EE 2.4 servlet specification

Various persistence mechanisms have been used, but the client wishes to standardise on use of Hibernate persistence framework with JPA. The staged development of SUMS has inevitably lead to change of the underlying persistence layer in terms of requirements, database schema design and persistence mechanisms. To implement the SUMS components as a single application the client has recognised the need to:

· Create a centralised SUMS database schema

· Provide an architectural framework enabling the SUMS system to continue its operation using its existing sub-system mechanism

· Implement a centralised RDBMS that will support the single underlying SUMS database allowing a unified and consistent state across the SUMS sub-systems

· Provide an architectural framework which could enable SUMS to operate as a complete J2EE application
· Provide an architectural framework utilising Component Based Development supporting the development of software that is consistent, readable, understandable, maintainable, reusable, testable and extensible

· Utilise Hibernate with JPA to support database persistence and migration to a single and centralised RDBMS, such as Oracle

· Consider the possible execution of SUMS through a network of distributed severs utilising an application server such as JBoss or GlassFish

Hibernate is an object/relational persistence and query service which has been developed through an open source project and is a key component of the JBoss Enterprise Middleware System developed by Red Hat Inc. (2006a). The use of Hibernate is free within open source and commercial projects and its terms of use are covered by a GNU Lesser General Public License, refer to License FAQ published by Red Hat Inc. (2006b).

Sun Microsystems Inc. (2008e) describe the Java Persistence API (JPA) as a POJO persistence framework that has been developed for compatibility with other O/R mapping technologies (such as Hibernate, Toplink and JDO). The Java Community Process (2007) manage the development of JPA through the Java Specification Request 220 expert group.

In parallel, a separate project is being undertaken by another student, Kate Stainton-Ellis, whom will coalesce the sub-systems via a customised “look and feel” and provide a ‘unified’ presentation tier of the SUMS sub-systems.

The client proposed that the SUMS application should be enhanced in stages where each stage was based on a sub-system. Order of development is :

· SUMS-Submission (OPSS) by Bui Hoang Phuong (2007)

· SUMS-Registration (OSRU) by Ivan Yeung (2005)

· SUMS-Assessment (OPMS) by Steve Powell (2005)

· SUMS-Allocation (OPAS) by Javi Ruiz (2006)

· SUMS-Monitor (OPPS) by Nikolas Fountas (2007)

The client confirmed the above sub-systems will continue to operate on a single server using the web server Apache and servlet container Tomcat utilising a single JVM and Class loader.

The vision for this project is to provide a Domain Object Model or “Model” within an architectural framework which will support its use by the existing sub-systems and enable the development of the new SUMS presentation tier.

The requirements of the SUMS Domain Object Model are to:

· Provide a consistant interface to the presentation tier.

· Provide read access to the SUMS database via Hibernate/JPA Entity Classes and/or Data Transfer Objects (DTO) according to the presentation tier requirements
· Provide update facilities to the SUMS database via Hibernate/JPA Entity Classes and/or Data Transfer Objects (DTO) according to the presentation tier requirements
· Implement a security policy to ensure database access is controlled according to the end user’s role within each sub-system; the policy will define what database Tables can be accessed and level of access to individual columns within each Table.

· Assume the presentation tier will provide the end user’s identity and role to enable an authorisation process during access to the SUMS RDBMS.
· Maintain an Audit Trail of table-column updates identifying, date/time stamp and end user

· Maintain an Audit Trail of denial of table-column access identifying type of access, date/time stamp and end user

· Assume the presentation tier will not implement code to directly update the SUMS database via Hibernate/JPA Entity Classes.

· Assume the presentation tier will manage the logical and business data integrity of the SUMS database by providing procedures that will control concurrent and synchronous updates.

· Assume all SUMS sub-systems will be operated through a Single Server, thus processing of transactions will occur as single units of work executed in a FIFO sequence.

· Assume the presentation tier will manage a conversation with the end user through one or more User Interfaces or ‘screens’.
· Assume the presentation tier will manage the authentication process of the end user and their access to SUMS sub-systems and their components.

· Assume the conversation will be managed by the presentation tier using a single round-trip of HTTP Request/Response to a SUMS sub-system web application

· Assume each conversation represents a single unit of work that encapsulates the physical integrity of updates to the SUMS database.

· Assume that the physical updates of the SUMS databases are implemented using the “session-per-request” model as described by Bauer and King (2003 p. 391).

· Implement procedures that will issue a single confirm updates to the SUMS database during the round-trip of HTTP Request/Response

· Implement procedures that will maintain the Persistent status of the Hibernate/JPA Entity Classes following a commit enabling continued support to following DOM processes, eg: issue e-mail confirmations, and presentation tier servlets during the round-trip of HTTP Request/Response

The Business process requirements for each sub-system have not altered and the client provided the necessary background reading material created by previous students. Regular communication via meetings, e-mail and telephone will enable and support an iterative SDLC (Software Development Life Cycle).
Appendix 2 SUMS Data Dictionary

Version History

	1.0
	Created by Claire Reed (Autumn 2004)

	
	Comments added by Jim Briggs (Autumn 2004 and Summer 2005)

	2.0
	By Steve Powell (Summer 2005)

	
	Comments added by Jim Briggs (Autumn 2005)

	2.1
	By Ivan Yeung (Autumn 2005)

	3.0
	By Dave Dunford (Winter 2007 / Spring 2008)

	3.0a
	Formatting added by Jim Briggs (December 2007)

Contents

Tables

Table Name: ACTIVATION
Description: Holds activation code for individual person

	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PERSON_ID
	BIGINT(20)
	Y
	Primary Key

	CODE
	VARCHAR(32)
	Y
	

History:
· initial design from Yeung (2005)
Table Name: ASSESSMENT

Description: NOT USED
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	ASSESSMENTID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	ASSESSMENTNAME
	VARCHAR(100)
	Y
	

	ASSESSMENTSIZE
	BIGINT(20)
	Y
	

History:
· initial design from Phuong (2007)

· redundant replaced using Milestone tables devised by Fountas (2007)
Table Name: AUDIT_TRAIL
Description: Holds project audit information, records date of any change together with a reason

	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	AUDIT_ID
	BIGINT(20)
	Y
	Primary Key

	PERSON_MAKING_CHANGE_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	PROJECT_BEING_CHANGED_ID
	BIGINT(20)
	Y
	Foreign Key – FINAL_PROJECT. PROJECT_ID

	REASON
	LONGTEXT
	
	

	DATE_ALTERED
	DATETIME
	
	

	ITEM_CHANGED
	VARCHAR(128)
	Y
	

	OLD_VALUE_OF_ITEM
	LONGTEXT
	
	

	NEW_VALUE_OF_ITEM
	LONGTEXT
	
	

	TIME_ALTERED
	DATETIME
	
	

History:
· initial design from Powell (2005) with Table Name of AUDIT
· field TIME_ALTERED added by Yeung (2005)

Table Name: CATEGORY_MARKS
Description: Records the individual category marks assigned during the calculation of a project mark.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	CAT_MARK_ID
	BIGINT(20)
	Y
	Primary Key

	MARK_ID
	BIGINT(20)
	Y
	Foreign Key – MARKS.MARK_ID

	CAT_ID
	BIGINT(20)
	Y
	Foreign Key – MARK_FORM_CATEGORIES.MFCID

	MARK
	BIGINT(20)
	Y
	

	CAT_COMMENT
	LONGTEXT
	
	

History:
· initial design from Powell (2005)
· Field CAT_ID renamed by Yeung (2005) from MFCID

Table Name: CATEGORY_OPTION_CRITERIA
Description: Holds the collection of category option criterion.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	OPT_CRITERIA_ID
	BIGINT(20)
	Y
	Primary Key

	MARK_CATEGORY
	BIGINT(20)
	Y
	Foreign Key – MARK_CATEGORIES.CATID

	POSITIVE_CRITERIA
	LONGTEXT
	
	

	NEGATIVE_CRITERIA
	LONGTEXT
	
	

	CAT_OPTION
	BIGINT(20)
	Y
	Foreign Key – CATEGORY_OPTIONS.OPT_ID

History:
· initial design from Powell (2005) with Table Name of OPTION_CRITERIA
· Field OPT_CRITERIA_ID renamed by Yeung (2005) from “Op_Cri_ID”, Powell (2005)
· Field CAT_OPTION renamed by Yeung (2005) from “Option”, Powell (2005) and Foreign Key altered to CATEGORY_OPTIONS.OPT_ID from CATEGORY_OPTIONS.CO_ID, Powell (2005)
· Field POSITIVE_CRITERIA renamed by Yeung (2005) from “Op_Cri_Positive”, Powell (2005)
· Field NEGATIVE_CRITERIA renamed by Yeung (2005) from “Op_Cri_Negative”, Powell (2005)

Table Name: CATEGORY_OPTION_GROUPS
Description: Associates a set of mark options as a group.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	OPT_GROUP_ID
	BIGINT(20)
	Y
	Primary Key

	OPT_GROUPT_NAME
	VARCHAR(64)
	
	

History:
· initial design from Powell (2005)
· Field OPT_GROUP_ID renamed by Yeung (2005) from “COG_ID”, Powell (2005)
· Field OPT_GROUPT_NAME renamed by Yeung (2005) from “COG_Desc”, Powell (2005)

Table Name: CATEGORY_OPTIONS

Description: Holds marking options which can be grouped and associated with a category.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	OPT_ID
	BIGINT(20)
	Y
	Primary Key

	OPT_LABEL
	VARCHAR(30)
	Y
	

	OPT_SELECTED_VALUE
	BIGINT(20)
	Y
	

	OPT_GROUP
	BIGINT(20)
	Y
	Foreign Key – CATEGORY_OPTION_GROUPS. OPT_GROUP_ID

	OPT_INDEX
	BIGINT(20)
	Y
	

· Field OPT_ID renamed by Yeung (2005) from “CO_ID”, Powell (2005)
· Field OPT_LABEL renamed by Yeung (2005) from “COG_ID”, Powell (2005)
· Field OPT_LABEL renamed by Yeung (2005) from “CO_Label”, Powell (2005)
· Field OPT_SELECTED_VALUE renamed by Yeung (2005) from “CO_Selected_Value”, Powell (2005)
· Field OPT_GROUP renamed by Yeung (2005) from “CO_Label”, Powell (2005) and Foreign Key altered to CATEGORY_OPTION_GROUPS.OPT_GROUP_ID from CATEGORY_OPTIONS.CO_ID, Powell (2005)
· Field OPT_INDEX renamed by Yeung (2005) from “CO_Index”, Powell (2005)

Table Name: COHORT
Description: Holds cohort information, project unit and project start/end date.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	COHORT_ID
	BIGINT(20)
	Y
	Primary Key

	COHORT_DESCRIPTION
	VARCHAR(128)
	Y
	

	PROJECT_START_DATE
	DATE
	
	

	PROJECT_END_DATE
	DATE
	
	

	COHORT_CLOSED
	VARCHAR(1)
	
	

History:
· initial design from Powell (2005)
· Field Unit_ID deleted by Yeung (2005), thus foreign key to UNIT.Unit_ID lost
· Field COHORT_CLOSED added by Yeung (2005)

Table Name: COHORT_COORDINATORS
Description: Associates staff in the capacity of coordinator with cohorts.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	CO_CORD_ID
	BIGINT(20)
	Y
	Primary Key

	COHORT_ID
	BIGINT(20)
	Y
	Foreign Key – COHORT. COHORT_ID

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

History:
· initial design from Powell (2005)

Table Name: CONTACTS
Description: Holds the contacts information for project’s organisation.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	ORGID
	BIGINT(20)
	Y
	Primary Key

	PERSONID
	BIGINT(20)
	
	Foreign Key – PERSON.PERSON_ID

	ORGADDR
	VARCHAR(100)
	
	

	ORGCONTACT
	VARCHAR(50)
	
	

	ORGDOES
	VARCHAR(50)
	
	

	ORGEMAIL
	VARCHAR(50)
	
	

	ORGNAME
	VARCHAR(50)
	
	

	ORGPOSTCODE
	VARCHAR(10)
	
	

	ORGTEL
	VARCHAR(20)
	
	

History:
· initial design from Yeung (2005)

· Field PERSONID added by Ruiz (2006) with foreign key to PERSON.PERSON_ID

Table Name: EMAILMESSAGES
Description: Holds the contacts information for project’s organisation.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MAILKEY
	VARCHAR(30)
	Y
	Primary Key

	MAILVALUE
	LONGTEXT
	
	

	MAILSTRING
	TEXT
	
	

History:
· initial design from Yeung (2005)

Table Name: EMAILS

Description:

	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	EMAIL
	VARCHAR(100)
	Y
	Primary Key

	USERID
	LONGTEXT
	
	Foreign Key -

History:
· initial design from Yeung (2005)

Table Name: FILEATTACHMENT
Description: Holds file attachments associated with a student milestone
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	FILE_ATTACHMENT_ID
	VARCHAR(30)
	Y
	Primary Key

	ATTACHED_FILE
	LONGTEXT
	Y
	

	FILE_NAME
	TEXT
	N
	

	FILE_SIZE
	?
	N
	

	CONTENT_TYPE
	?
	N
	

	STATUS
	?
	N
	

	LAST_EDITED
	DATE
	N
	

	ATTACHMENT_TYPE_ID
	BIGINT(20)
	N
	Foreign Key – FILE_ATTACHMENT_TYPES. ATTACHMENT_TYPE_ID

	TIMES_LEFT
	?
	N
	

	IP_ADDRESS
	?
	N
	

	MD5FileContent
	LONGTEXT
	
	MD5 generated from FileContent

	MD5FileUploadDT
	LONGTEXT
	
	MD5 generated from File Upload Date and Time

History:
· initial design from Fountas (2007)

· Field MD5FileContent added by Dunford (2008)

· Field MD5FileUploadDT added by Dunford (2008)

Table Name: FILEATTACHMENTTYPES
Description: Holds file attachments associated with a student milestone
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	ATTACHMENT_TYPE_ID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	DESCRIPTION
	?
	Y
	

	ALLOWED_SIZE
	?
	N
	

History:
· initial design from Fountas (2007)

Table Name: FILEUPLOAD
Description: NOT USED
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	FILEUPLOADID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	FILEUPLOADNAME
	VARCHAR(100)
	N
	

	FILEUPLOADCONTENT
	LONGBLOB
	N
	

	TIMEUPLOAD
	DATETIME
	
	

	FEEDBACKOF
	INT(?)
	
	

	ASSESSMENTID
	BIGINT(20)
	Y
	Foreign Key – ASSESSMENT. ASSESSMENTID

History:
· initial design from Phuong (2007)

· redundant replaced using FileAttachment tables devised by Fountas (2007)

Table Name: FINAL_PROJECT
Description: Holds details of a student's project.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PROJECT_ID
	BIGINT(20)
	Y
	Primary Key

	STUDENT_ID
	BIGINT(20)
	Y
	Foreign Key – STUDENT.STUDENT_ID

	COHORT_ID
	BIGINT(20)
	Y
	Foreign Key – COHORT.COHORT_ID

	UNIT_ID
	BIGINT(20)
	Y
	Foreign Key – UNIT.UNIT_ID

	PROJECT_TITLE
	VARCHAR(50)
	Y
	

	PROJECT_SUBMITTED_DATE
	DATETIME
	Y
	

	LATE_HAND_IN
	VARCHAR(1)
	N
	Y = “YES”

	UNIT_EXAM_BOARD_DECISION
	DATETIME
	Y
	

	PROJECT_STATUS
	VARCHAR(3)
	Y
	Foreign Key – STATUSES.STATUS_CODE

	PROJECT_MARK
	BIGINT(20)
	
	

	PROJECT_COMMENTS
	LONGTEXT
	
	

History:
· initial design from Powell (2005)

· Field Final_Mark deleted by Yeung (2005)
· Field PROJECT_MARK added by Yeung (2005)

· Field sequence altered by Yeung (2005)

Table Name: IDEAS2
Description: Holds details of a student's project.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PROJID
	BIGINT(20)
	Y
	Primary Key

	PERSONID
	BIGINT(20)
	
	Foreign Key – PERSON.PERSON_ID

	PROJAIMS
	LONGTEXT
	
	

	PROJAPPROVED
	VARCHAR(1)
	
	Y = “YES”

	PROJDATE
	DATETIME
	
	

	PROJDELIVER
	LONGTEXT
	
	

	PROJORG
	BIGINT(20) or

LONGTEXT ?
	
	Foreign Key – CONTACTS.ORGID

	PROJQUEST
	BIGINT(20) or

	
	

	PROJSTUDENT
	VARCHAR(100)
	
	Foreign Key – STUDENT.STUDENT_ID or STAFF.STAFF_NO

	PROJTITLE
	VARCHAR(100)
	
	

History:
· initial design from Yeung (2005)

· Field PERSONID added by Ruiz (2006) with foreign key to PERSON.PERSON_ID
· Field PROJORG type changed from BIGINT(20) to LONGTEXT

Table Name: MARK_CATEGORIES
Description: Holds the collection of mark categories.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	CATID
	BIGINT(20)
	Y
	Primary Key

	COG_ID
	BIGINT(20)
	Y
	Foreign Key – CATEGORY_OPTIONS_GROUP. OPT_GROUP_ID

	CATNAME
	VARCHAR(30)
	Y
	

	CATLONGNAME
	VARCHAR(100)
	Y
	

	CATBEGIN
	DATETIME
	Y
	

	CATEND
	DATETIME
	
	

	CATDESCRIPTION
	LONGTEXT
	
	

	OPTION_TYPE
	VARCHAR(1)
	Y
	R – Radio

S – Select

C - Checkbox

History:
· initial design from Powell (2005)

· Foreign Key to COG_ID changed by Yeung (2005) due to renaming of fields in table CATEGORY_OPTIONS_GROUP
Table Name: MARK_FORM_CATEGORIES
Description: Associates a number of mark categories with a form.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MFCID
	BIGINT(20)
	Y
	Primary Key

	MFCBEGIN
	DATETIME
	
	

	MFCEND
	DATETIME
	
	

	CATID
	BIGINT(20)
	Y
	Foreign Key – MARK_CATEGORIES.CATID

	CATINDEX
	BIGINT(20)
	
	

	CATWEIGHT
	BIGINT(20)
	
	

	FORMID
	BIGINT(20)
	Y
	Foreign Key – MARK_FORMS.FORMID

	OPTIONAL
	VARCHAR(1)
	
	

History:
· initial design from Powell (2005)

· Field sequence altered by Yeung (2005)

Table Name: MARK_FORMS
Description: Holds the collection of mark forms for various projects.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	FORMID
	BIGINT(20)
	Y
	Primary Key

	FORMNAME
	VARCHAR(255)
	
	

	FORMBEGIN
	DATE
	
	

	FORMEND
	DATETIME
	
	

History:
· initial design from Powell (2005)

Table Name: MARKER_CAPACITY
Description: Holds details of supervisor(s) of a project.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MARKER_CAPACITY_ID
	BIGINT(20)
	Y
	Primary Key

	PROJECT_ID
	BIGINT(20)
	Y
	Foreign Key – FINAL_PROJECT.PROJECT_ID

	MARKER_TYPE_ID
	BIGINT(20)
	Y
	Foreign Key – MARKER_TYPE.MARKER_TYPE_ID

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	ALLOCATED_DATE
	DATE
	
	

	UNALLOCATED_DATE
	DATE
	
	

History:
· initial design from Powell (2005)

Table Name: MARKER_TYPE
Description: Holds the different types of marker that could mark a project.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MARKER_TYPE_ID
	BIGINT(20)
	Y
	Primary Key

	MARKER_DESCRIPTION
	VARCHAR(64)
	Y
	

History:
· initial design from Powell (2005)

Table Name: MARKS
Description: Holds marking information.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MARK_ ID
	BIGINT(20)
	Y
	Primary Key

	PROJECT_ID
	BIGINT(20)
	Y
	Foreign Key – FINAL_PROJECT. PROJECT_ID

	MARKER_CAPACITY_ID
	BIGINT(20)
	Y
	Foreign Key – MARKER_CAPACITY. MARKER_CAPACITY_ID

	MARK
	BIGINT(20)
	Y
	

	MARK_DATE
	BIGINT(20)
	
	

	GENERAL_COMMENTS
	LONGTEXT
	
	

	COMMENTS_FOR_EXAMINERS
	LONGTEXT
	
	

	GENERAL_COMMENTS_EXAMBOARD
	LONGTEXT
	
	

	PLAGIARISM_UNFAIR_ACT
	VARCHAR(1)
	
	Y = “YES”

	PLAGIARISM_COMMENTS
	LONGTEXT
	
	

	UNFAIR_ACT_NOTES
	LONGTEXT
	
	

	ADJUSTMENT_APPLIED
	BIGINT(20)
	
	

	PLAGIARISM_SUSPECT
	VARCHAR(1)
	
	Y = “YES”

History:
· initial design from Powell (2005)

· Field Person_ID deleted by Yeung (2005), thus foreign key to PERSON.Person_ID lost
· Field PLAGIARISM_SUSPECT added by Yeung (2005)

· Field sequence altered by Yeung (2005)

Table Name: MILESTONES
Description: Records milestones set by a unit / project co-ordinator
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	MILESTONE_ ID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	START_DATE
	DATE
	Y
	

	END_DATE
	DATE
	N
	

	STATUS
	VARCHAR(?)
	N
	MET, NOT MET, OVERDUE, NOT COMPLETED

	DESCRIPTION
	LONGTEXT
	Y
	

	TYPE
	VARCHAR(1)
	N
	I = Intermediate

F = Final

	DATE_ADDED
	DATE
	N
	

	LAST_EDITED
	DATE
	Y
	

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	ROLE_ID
	BIGINT(20)
	N
	Foreign Key – ROLES.ROLE_ID

	ATTACHMENT_TYPE_ID
	BIGINT(20)
	N
	Foreign Key – FILE_ATTACHMENT_TYPES. ATTACHMENT_TYPE_ID

History:
· initial design from Fountas (2007)

· Field TYPE added by Dunford (2007/8) to identify artefacts associated with sub-system OPSS Final asessments

Table Name: MSTUDENTMILESTONES
Description: Records milestones set by a unit / project co-ordinator
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	STUDMSTNID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	STATUS
	?
	?
	

	PENALTY
	?
	N
	

	STUDENT_ID
	BIGINT(20)
	Y
	Foreign Key – STUDENT.STUDENT_ID

	PROJECT_ID
	BIGINT(20)
	Y
	Foreign Key – FINAL_PROJECT. PROJECT_ID

	MILESTONE_ ID
	BIGINT(20)
	Y
	Foreign Key – MILESTONES. MILESTONE_ID

	DATE_ADDED
	DATE
	N
	

	LAST_EDITED
	DATE
	Y
	

	STAFF_NO
	BIGINT(16)
	Y
	Foreign Key – STAFF. STAFF_NO

	FILE_ATTACHMENT_ID
	BIGINT(20)
	N
	Foreign Key – FILE_ATTACHMENT. FILE_ATTACHMENT_ID _ID

History:
· initial design from Fountas (2007)

Table Name: MUNITMILESTONES
Description: Records milestones set by a unit / project co-ordinator
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	UNITMSTNID
	BIGINT(20)
autoincrement
	Y
	Primary Key

	MILESTONE_ ID
	BIGINT(20)
	Y
	Foreign Key – MILESTONES. MILESTONE_ID

	UNIT_ID
	BIGINT(20)
	Y
	Foreign Key – UNIT.UNIT_ID

	COHORT_ID
	BIGINT(20)
	Y
	Foreign Key – COHORT.COHORT_ID

History:
· initial design from Fountas (2007)

Table Name: OPTION_MARKS
Description: Records the options selected for a particular category during the calculation of a project mark.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	OPT_MARK_ ID
	BIGINT(20)
	Y
	Primary Key

	MARK_ID
	BIGINT(20)
	Y
	Foreign Key – MARKS.MARK_ID

	CAT_ID
	BIGINT(20)
	Y
	Foreign Key – MARK_FORM_CATEGORIES. MFCID

	CO_ID
	BIGINT(20)
	Y
	Foreign Key – CATEGORY_OPTIONS.OPT_ID

History:
· initial design from Powell (2005)

· Field CAT_ID renamed by Yeung (2005) from “MFCID” of Powell (2005)
· Foreign Key field name changed due to table field renaming by Yeung (2005)

Table Name: PERSON
Description: Holds information about an individual person.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PERSON_ ID
	BIGINT(20)
	Y
	Primary Key

	USER_NAME
	VARCHAR(16)
	Y
	

	PWD
	VARCHAR(16)
	Y
	

	FIRST_NAME
	VARCHAR(64)
	Y
	

	SURNAME
	VARCHAR(64)
	Y
	

	INACTIVE
	VARCHAR(1)
	
	Y = “YES”

History:
· initial design from Powell (2005)

· Field PWD renamed by Yeung (2005) from “Password” of Powell (2005)
· Field INACTIVE added by Yeung (2005)

Table Name: PERSON_EMAIL
Description: Holds E-mail addresses for an individual person.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	E_MAIL_ID
	BIGINT(20)
	Y
	Primary Key

	PERSON_ ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	E_MAIL_ADD
	VARCHAR(128)
	Y
	

	E_MAIL_SUSPENDED
	VARCHAR(1)
	
	Y = “YES”

History:
· initial design from Powell (2005)

Table Name: PERSON_ROLES
Description: Holds roles for an individual person.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	ROLE
	BIGINT(20)
	Y
	Foreign Key – ROLES.ROLE_ID

	USER_NAME
	VARCHAR(16)
	Y
	Foreign Key – PERSON.USER_NAME

p.s. Redundant
due to implement Tomcat security

History:
· initial design from Powell (2005)

· field USER_NAME added by Yeung (2005) but possibly not needed

· Field sequence altered by Yeung (2005)

· Q. what is the primary key ?

Table Name: PRIZE_CATEGORIES
Description: Holds information about possible prize categories.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PRIZE_CAT_ID
	BIGINT(20)
	Y
	Primary Key

	PRIZE_CAT_NAME
	VARCHAR(16)
	Y
	

	PRIZE_VALUE
	BIGINT(20)
	
	

	PRIZE_CAT_CRITERIA
	LONGTEXT
	
	Optional notes about prize background and project characteristics which would indicate eligibility.

History:
· initial design from Powell (2005)

Table Name: PRIZE_NOMINATIONS
Description: Holds information about prize nominations.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	PRIZE_NOM_ID
	BIGINT(20)
	Y
	Primary Key

	PRIZE_CAT_ID
	BIGINT(20)
	Y
	Foreign Key – PRIZE_CATEGORIES.PRIZE_CAT_ID

	MARK_ID
	BIGINT(20)
	Y
	Foreign Key – MARKS.MARK_ID

	SUPPORTING_COMMENTS
	LONGTEXT
	
	

History:
· initial design from Powell (2005)

Table Name: PREFERRED_STUDENTS
Description: Holds student project submission dates
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	preferredId
	BIGINT(20)
autoincrement
	Y
	Primary Key

	studentId
	BIGINT(20)
	Y
	Foreign Key – STUDENT.STUDENT_ID

	projId
	BIGINT(20)
	Y
	Foreign Key – IDEAS2.projid

Identifies the project idea

	markerCapacityId
	BIGINT(20)
	Y
	Foreign Key – MARKER_CAPACITY.markerCapacityId

Identifies the supervisor

History:
· initial design from Ruiz (2006)

Table Name: PROJECT_CHOICE
Description: Holds student project submission dates
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	choiceId
	BIGINT(20)
autoincrement
	Y
	Primary Key

	studentId
	BIGINT(20)
	Y
	Foreign Key – STUDENT.STUDENT_ID

	projId
	BIGINT(20)
	Y
	Foreign Key – IDEAS2.projid

Identifies the project idea

	choiceDate
	DATE
	Y
	Project choice submission date

History:
· initial design from Ruiz (2006)

Table Name: PROJECT_CHOICE_OPTIONS
Description: Holds student project preference order
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	pcoId
	BIGINT(20)
autoincrement
	Y
	Primary Key

	choiceId
	BIGINT(20)

	Y
	Foreign Key – PROJECT_CHOICE.choiceId. identifies the project choice

	projId
	BIGINT(20)
	Y
	Foreign Key – IDEAS2.projid

Identifies the project idea

	preferenceOrder
	SMALLINT
	Y
	Preference order for that chosen project

History:
· initial design from Ruiz (2006)

Table Name: ROLES
Description: Holds person role information.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	ROLE_ID
	BIGINT(20)
	Y
	Primary Key

	ROLE_DESCRIPTION
	VARCHAR(32)
	Y
	

History:
· initial design from Powell (2005)

Table Name: STAFF
Description: Holds university staff specific details.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	STAFF_NO
	BIGINT(16)
	Y
	Primary Key

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

History:
· initial design from Powell (2005)

Table Name: STATUSES
Description: Provides a text description to the project status codes.
	Attributes
	Field Type
	Compulsory

Field
	Additional Information

	STATUS_CODE
	VARCHAR(3)
	Y
	Primary Key

	STATUS
	VARCHAR(100)
	
	Description of project status

History:
· initial design from Powell (2005)

Table Name: STUDENT
Description: Holds student specific details.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	STUDENT_ID
	BIGINT(20)
	Y
	Primary Key

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	HEMIS_NO
	BIGINT(20)
	Y
	

	DEGREE_STREAM
	VARCHAR(16)
	Y
	

	FINAL_YEAR
	VARCHAR(16)
	Y
	i.e. 2005/2006

IT SHOULD BE using COHORT.COHORT_ID or IT may redundant

History:
· initial design from Powell (2005)

· Field sequence altered by Yeung (2005)

· Q. what is field FINAL_YEAR used for and should it have a foreign key ?

Table Name: TEL_NUMBER
Description: Holds person telephone numbers.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	TELEPHONE_NUMBER_ID
	BIGINT(20)
	Y
	Primary Key

	PERSON_ID
	BIGINT(20)
	Y
	Foreign Key – PERSON.PERSON_ID

	TEL_NUMBER
	VARCHAR(20)
	Y
	

History:
· initial design from Powell (2005)

Table Name: UNIT
Description: Holds project unit codes.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	UNIT_ID
	BIGINT(20)
	Y
	Primary Key

	UNIT_CODE
	VARCHAR(16)
	Y
	

	UNIT_NAME
	VARCHAR(50)
	Y
	

	ACADEMIC_YR_FIRST_RUN
	DATE
	
	

	ACADEMIC_YR_LAST_RUN
	DATE
	
	

History:
· initial design from Powell (2005)

· Field ACADEMIC_YR_FIRST_RUN renamed by Yeung (2005) from “Academic year first run” of Powell (2005)

· Field ACADEMIC_YR_LAST_RUN renamed by Yeung (2005) from “Academic year last run” of Powell (2005)

Table Name: UNIT_MARK_FORMS
Description: Used to associate a marking form with a Unit.
	Attributes
	Field Type
	Compulsory
Field
	Additional Information

	UMFID
	BIGINT(20)
	Y
	Primary Key

	UNIT_ID
	BIGINT(20)
	Y
	Foreign Key – UNIT.UNIT_ID

	FORM_ID
	BIGINT(20)
	Y
	Foreign Key – MARK_FORMS.FORMID

	UMFBEGIN
	DATETIME
	Y
	

	UMFEND
	DATETIME
	
	

History:
· initial design from Powell (2005)
Appendix 3 SUMS Entity Relationship Diagrams by Role

Appendix 3.1Entity Relationship Diagram for Project Coordinator

[image: image30.emf]Unit

PK UnitId

UnitName

Final_Project

PK ProjectId

CohortId

UnitId

StudentId

ProjectTitle

Person

PK PersonId

UserName

Password

FirstName

Surname

FileAttachmentTypes

PK AttachmentTypeId

Description

AllowedSize

MUnitMilestones

PK UnitMstnId

UnitId

CohortId

MilestoneId

MStudentMilestones

PK StudMstnId

ProjectId

StudentId

MilestoneId

DateAdded

LastEdited

StaffNo

FileAttachmentId

Milestones

PK MilestoneId

StartDate

EndDate

Status

Type - Final

Description

DateAdded

LastEdited

PersonId

AttachmentTypeId

Role_Id

1

SUMS-Submission database schema

Project / Cohort Coordinator

Cohort Co-ordinator

PK co_cord_id

cohort_id

person_id

Cohort

PK cohort_id

Unit_id

project_start_date

project_end_date

1

*

1

1

*

*

*

*

*

*

*

*

*

1

1

1 *

Appendix 3.2 Entity Relationship Diagram for Marker

[image: image31.emf]Final_Project

PK ProjectId

CohortId

UnitId

StudentId

ProjectTitle

Student

PK StudentId

PersonId

Person

PK PersonId

UserName

Password

FirstName

Surname

Marker_Capacity

PK MarkerCapacityId

ProjectId

MarkerTypeId

PersonId

Marker_type

PK MarkerTypeId

MarkerDescription

FileAttachment

PK FileAttachmentId

AttachedFile

FileName

FileSize

ContentType

Status

LastEdited

AttachmentTypeId

TimesLeft

MD5FileContent

MD5FileUploadDT

FileAttachmentTypes

PK AttachmentTypeId

Description

AllowedSize

MStudentMilestones

PK StudMstnId

ProjectId

StudentId

MilestoneId

DateAdded

LastEdited

StaffNo

FileAttachmentId

Milestones

PK MilestoneId

StartDate

EndDate

Status

Type - Final

Description

DateAdded

LastEdited

PersonId

AttachmentTypeId

Role_Id

1

*

1

*

*

*

*

1

*

1

*

1

1

*

1

*

*

1

Roles

PK role_id

role_description

1

*

Person_Roles

PK person_role_id

person_id

role_id

*

1

*

Staff

PK Staff_id

Person_id

1

*

SUMS-Submission database schema

Marker

Appendix 3.3 Entity Relationship Diagram for Student

[image: image32.emf]Unit

PK UnitId

UnitName

Final_Project

PK ProjectId

CohortId

UnitId

StudentId

ProjectTitle

Student

PK StudentId

PersonId

Person

PK PersonId

UserName

Password

FirstName

Surname

FileAttachment

PK FileAttachmentId

AttachedFile

FileName

FileSize

ContentType

Status

LastEdited

AttachmentTypeId

TimesLeft

MD5FileContent

MD5FileUploadDT

FileAttachmentTypes

PK AttachmentTypeId

Description

AllowedSize

MStudentMilestones

PK StudMstnId

ProjectId

StudentId

MilestoneId

DateAdded

LastEdited

StaffNo

FileAttachmentId

Milestones

PK MilestoneId

StartDate

EndDate

Status

Type - Final

Description

DateAdded

LastEdited

PersonId

AttachmentTypeId

Role_Id

1

*

*

*

1

*

*

1

1

*

1

*

1

1

*

1

*

*

SUMS-Submission database schema

Student

Appendix 4 Data Typing Standards
Developed from Bauer and King (2007, pp. 212-218)

	Hibernate mapping type
	Java type
	Standard SQL type

	integer
	java.lang.Integer
	INTEGER

	long
	java.lang.Long
	BIGINT

	character
	java.lang.String
	CHAR(1)

	string
	java.lang. String
	VARCHAR

	True_false
	java.lang.Boolean
	CHAR(1) (‘T’ or ‘F’)

	date
	java.sql.Date
	DATE

	blob
	java.lang.Blob or byte[]
	BLOB

Primary key and associated Foreign Key relationships were managed using Hibernate mapping type long, refer to Bauer and King (2007, pp. 161-166) “Mapping entities with identity”.
Appendix 5 Business Services of the SUMS DOM

Package: DD.SUMS.Services

Class: UserControl
Stateless

	Method
	Return
	Parameters
	Exceptions / Reason

Return Values

	loginUser
	Person Entity, null = not found or recognised
	String userName,

String password
	ExceptionUserNotExist

ExceptionInvalidPassword

ExceptionUserNotUnique

BusinessException / Persistence failure

	findRole
	String role
	Person entity returned during the logon process
	Role returned as unknown, marker or cohort co-ordinator

Note: Student role is determined by calling method login() of Class StudentControl

Package: DD.SUMS.Services

Class: StudentControl

Stateless

	Method
	Return
	Parameters
	Exceptions / Reason

	login
	ArrayList of Student Entity, empty list user is not recognised as a student
	Person entity returned during the logon process
	Returns empty ArrayList for Persistence failure

	findFinalProjectByStudent
	ArrayList of Final Project Entity
	Person entity returned during the logon process
	Returns empty ArrayList for Persistence failure

	findStudentMilestonesByStudent
	ArrayList of Student Milestones Entity
	Person entity returned during the logon process
	Returns empty ArrayList for Persistence failure

	findStudentMilestonesById
	Student Milestones Entity
	Student Milestones Id, Primary key
	Returns null for Persistence failure

Package: DD.SUMS.Services

Class: CohortCoordinatorControl
Stateless
	Method
	Return
	Parameters
	Exceptions / Reason

	login
	
	Person entity returned during the logon process
	

	findAllCohorts
	ArrayList of Cohort Entity, empty list user is a co-ordinator for no cohorts
	Person entity returned during the logon process
	Returns empty ArrayList for Persistence failure

	isCoordinatorForCohort
	void
	Long Person.personId, Long Cohort.cohortId
	NotCoOrdForCohort

And

BusinessException / Persistence failure

	findCohortByCohortId
	Cohort Entity
	Long Cohort.cohortId
	Returns null for Persistence failure

	findMilestoneByUnitmstinid
	Milestones Entity, null = not found
	Long

UnitMilestones.

unitmstinid
	

	findUnitMilestoneByUnitmstinid
	UnitMilestones Entity, null = not found
	Long

UnitMilestones.

unitmstinid
	Returns null for Persistence failure

	findMilestoneByUnitMilestone
	Milestones Entity, null = not found
	UnitMilestones Entity
	

	findAllUnits
	ArrayList of Units Entity, null return if no units defined
	
	Returns empty ArrayList for Persistence failure

	findUnitByUnitId
	Unit Entity, null = not found
	Long Unit.unitId
	Returns null for Persistence failure

	findAllFileAttachmentTypes
	ArrayList of FileAttachment

Types Entity, null return if no units defined
	
	Returns empty ArrayList for Persistence failure

	findByAttachmentTypeId
	FileAttachment
Types entity
	Long FileAttachment

Types. attachmentTypeId
	Returns null for Persistence failure

	RemoveUnitMilestone
	
	UnitMilestones entity
	

	AddUnitMilestone
	
	UnitMilestones entity
	

	AddMilestone
	
	Milestones entity
	

	UpdateMilestone
	
	Milestones entity
	

	AddStudentMilestone
	
	StuentMilestones entity
	

	findFinalProjectByCohortAnd
Unit
	ArrayList of Final Project Entity
	Long Cohort.cohortId

Long Unit.unitId
	Returns empty ArrayList for Persistence failure

Package: DD.SUMS.Services

Class: MarkerControl
Stateless
	Method
	Return
	Parameters
	Exceptions / Reason

	login
	
	Person entity returned during the logon process
	

	findFinalProjectByMarker
	ArrayList of Final Project Entity
	Person entity returned during the logon process
	Returns empty ArrayList for Persistence failure

Package: DD.SUMS.Services

Class: UploadFile

Stateful

	Method
	Parameters
	Exceptions / Reason

	constructor
	org.apache.struts.upload.FormFile,

String Student Milestone Id,

Person entity returned during the logon process
	

	PrepareForUpload
	
	ExceptionStudentFileNotFound
BusinessIOException / IO error in processing file

	PerformUpload
	
	

Package: DD.SUMS.RDBMS.DAO

Data Access Object (DAO) classes to the SUMS RDBMS are:

1. called by the Service methods within classes of the DD.SUMS.Services Package

2. manage persistence programmatically providing transaction demarcation via the JPA EntityTransaction API and Bauer and King (pp. 449-450) describe such a design as resource-local transactions that are controlled by the application that do not participate in a global system transaction mechanism

3. Keith and Schincariol (2006 pp. 128-131) identify the methods available to resource-local transactions using the JPA EntityTransaction API.

4. Stateless

5. Exceptions are managed by the Service Methods and generally not passed up – this simplified implementation exposes the application to possible IllegalStateException and detached entities. A Persistence Exception within a Transaction will cause an automatic rollback and release of the Persistence Context (and thus Transactional Context) as described by Bauer and King (2007, pp. 449-450). After a Persistence Exception, creation of a new transaction is attempted as the logic of the DAO classes will automatically start a new Persistence Context and Transactional Context for subsequent RDBMS access !

Appendix 6 SUMS-Submission Logon JSP example
<%@include file="/WEB-INF/jspf/WebPageHeader.jspf" %>

<%@include file="/WEB-INF/jspf/TaglibStuff.jspf" %>

<html:html xhtml="true">

<HEAD>

<TITLE>Sign in, Please!</TITLE>

<html:base/>

</HEAD>

<BODY>

<%@include file="/WEB-INF/jspf/sums_header.jspf" %>

<%@include file="/WEB-INF/jspf/sums_sub_sys_header.jspf" %>

<%@include file="/WEB-INF/jspf/ExceptionMessage.jspf" %>

<html:form action="/LogonSubmit" focus="username">

<TABLE border="0" width="100%">

<TR>

<TH align="right">Username:</TH>

<TD align="left"><html:text property="username"/></TD>

</TR>

<TR>

<TH align="right">Password:</TH>

<TD align="left"><html:password property="password"/></TD>

</TR>

<TR>

<TD align="right"><html:submit/></TD>

<TD align="left"><html:reset/></TD>

</TR>

</TABLE>

</html:form>

<%@include file="/WEB-INF/jspf/sums_sub_sys_footer.jspf" %>

<%@include file="/WEB-INF/jspf/sums_footer.jspf" %>

</BODY>

</html:html>
*

1

Class Diagram of the Logon Process

1

1

findFinalProjectByStudent

findStudentMilestonesByStudent

findStudentMilestonesById

StudentControl

findFinalProjectByMarker

MarkerControl

login

findAllCohorts

isCoordinatorForCohort

findCohortByCohortId

FindMilestoneByUnitmstinid

FindUnitMilestoneByUnitmstinid

FindMilestoneByUnitMilestone

findAllUnits

findUnitByUnitId

findAllFileAttachmentTypes

findByAttachmentTypeId

RemoveUnitMilestone

AddUnitMilestone

AddMilestone

UpdateMilestone

AddStudentMilestone

findFinalProjectByCohortAndUnit

CohortCoordinatorControl

get/set

Student

get/set

MarkerCapacity

get/set

CohortCoordinator

get/set

PersonRoles

get/set

Person

loginUser

findRole

UserControl

�This must be wrong – you can't have a foreign key relationship to more than one table!

Perhaps make it PERSON instead.

�Not necessarily – perhaps better marked as "Reserved for future use"

Page 2 of 118
DD SUMS Architecture v5.doc

21/04/2008

_1267454435.unknown

_1269943780.unknown

_1269944692.unknown

_1270269862.unknown

_1269943781.unknown

_1269944691.unknown

_1268322459.unknown

_1268818169.unknown

_1268827484.unknown

_1268829854.unknown

_1268827483.unknown

_1268727285.unknown

_1268818167.unknown

_1268133010.unknown

_1266329977.unknown

_1266920365.unknown

_1267286788.unknown

_1267354653.unknown

_1267286787.unknown

_1267027207.unknown

_1266920363.unknown

_1266920364.unknown

_1266909956.unknown

_1266250227.unknown

_1266328639.unknown

_1266250226.unknown

